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KIVA-II: ACOMPUTER PROGRAM FOR CHEMICALLY
REACTIVE FLOWS WITH SPRAYS

by

A. A, Amsden, P. J. O’Rourke, and T. D. Butler

ABSTRACT

This report documents the KIVA-II computer program for the
numerical calculation of transient, two- and three-dimensional,
chemically reactive fluid flows with sprays. KIVA-II extends and:
enhances the earlier KIV A code, improving-its computational-accu--
racy and efficiency and its ease-of-use. The KIVA-II equations and-
numerical solution procedure are very general and can be applied
to_laminar or turbulent flows; subsonic or supersonic-flows, and-
single-phase-or dispersed two-phase flows. Arbitrary numbers of
species and chemical reactions are allswed. A stochastic particle-
method is used to calculate evaporating liquid sprays, including the
effects of droplet collisions and aerodynamic breakups. Although-
the initial and boundary conditions and mesh generation have been.
written for internal combustion engine calculations, the logic for
these specifications can-be easily modified for a variety of other-
applications. Following-an-overview of the principal features of the
KIVA-II program, we describe in detail the equations-solved, the-
numerical solution procedure, and the structure of the computer
program. Sixteen appendices provide additional details concern-
ing the numericalsolution-procedure.

I. INTRODUCTION AND BACKGROUND-

The in-cylinder dynamics of advanced internal combustion engines; sueh-as-the-
direct-injection stratified-charge(DISC) engine, involve a numberof complex, closely
coupled physical and chemical processes. These include the transient three-dimensional
dymammics of evaporating fuel sprays interacting with flowing multicomponent gases

undergoing mixing; ignition, chemical reactions, and heat transfer. The KIVA code!™® has

the ability to calculate such flows in engine c¢ylinders with arbitrarily shaped piston
geometries, including the effects of turbulence and wall heat transfer. In response to the
needs of a large user community-and to recent developments in the fields of numerical
fluid dynamics andinternal combustion engine modeling, we have implemented many

improvements to KIVA since its public release in 1985. The changes-are incorporatedin-a-
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new version of the code, called KIVA-II, that is documented in this report. KIVA-II builds
on the capabilities of KIVA and is quite similar in structure. Current users of KIVA will
find the transition to KIVA-II to be straightforward.

An excerpt from Ref. 1 explains the basis under which KIVA was written: “Since
KIVA wasdeveloped with applications to internal combustion engines in mind, it contains
several features designed to facilitate such applications. However, the basic code structure
is modular and quite general, and most of the major options (chemical reactions, sprays,
ete.) can be individually activated or deactivated by setting appropriate values for the
associated input switches. The code is therefore applicable to a wide variety of multi-
dimensional problems in fluid dynamics, with or without chemical reactions or sprays.”
Indeed, KIVA has been used for numerous studies besides internal combustion engines,
including cold flow analyses in complicated geometries, continuous spray combustors,
Bunsen burner flames, nonreacting sprays, and hydrogen-oxygen flames propagating in
long tubes, to name just a few. It is impractical to cite all such studies here because of the
widespread distribution and use of the code in industry and universities. For internal
combustion engines, besides the studies of the DISC engine that have been carried on at
General Motors Research Laboratories, Princeton University, and Los Alamos National
Laboratory,?7 it has been used as the basis for numerical investigations of diesel
engines®1® and of coal-fired diesels'! as well.

From a historical perspective, KIVA-II is the latest in a series of multidimensional
codes that we have produced since we began work on numerical simulations of internal
combustion engines 12 years ago, under the sponsorship of what has become the
Department of Energy’s Energy Conversion and Utilization Technologies (ECUT)
program. All of them are multidimensional finite-difference codes that solve the transient
equations of motion. The first of these was the RICE code.'? RICE was a two-dimensional
Eulerian code that utilized rectangular computing zones for its mesh, eddy diffusivity to
model the turbulence, Arrhenius kinetics with an arbitrary number of reactions and
species to represent the chemical kinetics, and a partially implicit finite difference formu-
lation to efficiently treat the acoustic terms for low Mach number flows. Bracco et al. at
Princeton modified RICE and produced the REC code,!® which included the effect of piston
motion in the unresolved third dimension of the calculations. Another two-dimensional
Eulerian code, APACHE, " followed RICE. This had the capabilities of RICE and the
generality of arbitrarily shaped cells. CONCHAS? followed APACHE, and it likewise
utilized arbitrarily shaped cells but offered the feature of an arbitrary Lagrangian-
Eulerian formulation that allowed the computing zones to follow the piston motion. In
addition the turbulence effects were included in the calculations by use of a subgrid scale
model. CONCHAS-SPRAY 8 replaced CONCHAS. Asits name implies, it included a

model for the spray dynamics, a statistical representation that accounted for a spectrum
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of droplet sizes and the effects of evaporation. The turbulence was calculated by means of
a subgrid seale model that used a transport equation for turbulent kineticenergy anda
law-of-the-wall treatment for turbulent boundary layers: The chiemistry was generalized’
toinclude both kinetic and equilibrium reactions,. KIVA!2 then followed. In.addition to-
retaining the capabilities of CONCHAS-SPRAY, it featured the ability to do either two-
or three-dimensional problems with the same code. Furthermore, it had an expanded
spray model-that treated-collisionsand-coalescence: An-acousticsubeyelingmethod was
adopted to permit the efficient-computation of low-Mach number{lows.

Table I gives the ways in which KIVA-II differs from KIVA. These fall into four gen-
eral categories: computational efficiency improvements, numerical accuracy improve-
ments, new or improved physical submodels, and improvements in ease-of-use and
versatility.

While some familiarity with KIVA!3 or the CONCHAS-SPRAY code!® would be-
helpful; itis not necessary for understanding thisreport or using KIVA-II. This report is
intended to fuily document the KIVA-TI code. Accordingly we now summarize the equa-
tions solved, the numerical solution procedure, and some speeial features designed to
facilitate internal combustion engine-applications.

KIVA-IT'solves the unsteady equations of motion of a turbulent, chemically reactive
mixture of ideal gases, coupled to the equations for a single-component vaporizing fuel
spray. The gas-phase solution procedure is based on a finite volume method called the
ALE (arbitrary Lagrangian-Eulerian) method.%!8 Spatial differencesareformedona-
finite-difference mesh that subdivides the computational region into a number of small
cells that are hexahedrons. The corners of the cellsarecalled vertices, andthe positionsof-
the vertices may be arbitrarily specified functions of time, thereby-allowing-a Lagrangian;
Eulerian,; or mixed deseription: The arbitrary mesh can conform to curved boundaries
and-can move to follow changes in combustion chamber geometry. A strength of the
method is that the mesh need not be orthogonal. The spatial differencingismade conserv-
ative wherever possible. The procedure used is to difference the basic equations in inte-
gral form, with the volume of-a typical cell used asthe control volume, and with diver--
gence terms transformed to surface integrals using the divergence theorem.?

The Cartesian components of the velocity vector are stored at cell vertices, and the
momentum equationsare differenced in a strictly conservative fashion. In contrast to the.
original ALE method,!”!8 however, cell-faced velocities are used during a portion of the -
computational cyele.? Their use greatly reducesthe tendency of the ALE method to para-
sitic velocity modes, thereby largely eliminating the need for node coupler,

The transient solution is marched out in a sequence of finite time increments called
cycles or timesteps. On each cycle the values of the dependent variables are calculated




TABLE I
KIVA-II FEATURES

1. Computational Efficiency Improvements
e Coupled, implicit differencing of diffusion terms and terms associated
with pressure wave propagation
® Subcycled calculation of convection
e Stochastic spray particle injector
® 2-D to 3-D converter

2. Numerical Accuracy Improvements
e Optional quasi-second-order upwind convection scheme
® Generalized mesh diffusion algorithm
e Method for computing turbulent droplet dispersion when At exceeds
turbulent correlation time

e Convection of length scale in place of the turbulence dissipation rate ¢

3. New or Improved Physical Submodels
® k—¢ turbulence model
e Model for droplet aerodynamic breakup

4. Improvements in Ease-of-Use and Versatility

Nonflat cylinder head option

Inflow/outflow boundaries

Simplified velocity boundary conditions

Alphabetized epilogue listing FORTRAN variables and their definitions
Gravitational terms

Eulerian and Lagrangian options

Library of thermophysical properties of common hydrocarbons

Initial Bessel function swirl profile

Optional tabular input of spray injection velocity

from those on the previous cycle. As in the original ALE method,'”!® each cycle is divided
into two phases — a Lagrangian phase and a rezone phase. In the Lagrangian phase the
vertices move with the fluid velocity, and there is no convection across cell boundaries.

In the rezone phase, the flow field is frozen, the vertices are moved to new user-specified
positions, and the flow field is remapped or rezoned onto the new computational mesh.
This remapping is accomplished by convecting material across the boundaries of the com-
putational cells, which are regarded as moving relative to the flow field.
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In contrast to KIVA, the temporal difference scheme in KIVA-II is largely implicit.
Because of this, the timesteps used by KIVA-II are calculated based on accuracy, not
stability; criteria-and can be considerably larger than the timesteps used by KIVA. This.
has resulted in considerable savings of computational time in many problems. In the
Lagrangian phase, implicit differencing is used for all the diffusion terms and the terms
associated with pressure wave propagation. The coupled implicit equations are solved by
a method similar to the SIMPLE'®algorithm; with individual'equations being solved by-
the conjugate residual method.2°

Explicit methods are used tocalculate convection in the rezone phase; but the con-
vection calculation can be subcycled an arbitrary number of times, and thus the main.
computational timestep is not restricted by the Courant stability condition of explicit .
methods.2! The convection timestep is a submultiple of the main computational timestep
and does satisfy the Courant condition. In addition to the partial donor cell differencing-
in KIVA,! KIVA-II can use a quasi-second-order upwind (QSOU ) scheme for convection.
Based on the-ideasof van Leer,?? this scheme is monotone and approaches second-order
accuracy when convecting smoothprofiles. While more accurate-than partial donorcell
differencing, QSOU is also more time-consuming, and thus it is included as an option.

The number of species and chemical reactions that can be accounted for in KIVA-II
are arbitrary; they are limited only by computer time and storage considerations. The.
code distinguishes between slow reactions, which proceed kinetically, and fast reactions,
which are assumed to be in equilibrium.?3 Chemical rate expressions for the kinetic reac-
tions, which are Arrhenius in form, are evaluated by a partially implicit procedure. Two
implicit equation solvers are available to compute chemical equilibria-- a fast algebraic
solver for hydrocarbon/air combustion?! and an iterative solver for more general
circumstances.?%

Two models are available to represent the effects of turbulence. The user has the
option to use a standard version of the £ —¢ turbulence model,?® modified to include volu-
metric expansion-effects?’ and spray/turbulence interactions,* or to use-amodified version
of the subgrid scale (SGS) turbulence model of KIVA.! The SGS model reduces to the k—¢
model near walls where all turbulence length scales are too smallto be resolved by the-
computational mesh. Boundary layer drag and wall heat transfer are calculated by
matching to a modified turbulent law of the wall. KIVA-II does not have a model for the
effects of turbulence on the mean chemical reaction rates, but the user can easily modify
the code to include a mixing-controlled chemistry model.2831

Evaporating liquid sprays are represented by a discrete-particle technique, 32 in.
which each computational particle represents a number of droplets of identical size, ve-
locity, and temperature. Probability distributions often govern the assignmentof droplet:
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properties at injection or the changes in drop properties at downstream locations. When
this is the case, droplet properties are determined by using a Monte Carlo sampling tech-
nique. The particles and fluid interact by exchanging mass, momentum, and energy. The
momentum exchange is treated by implicit coupling procedures to avoid the prohibitively
small timesteps that would otherwise be necessary. Accurate calculation of mass and
energy exchange is ensured by automatic reductions in the timestep when the exchange
rates become large. Turbulence effects on the droplets are accounted for in one of two ways.
When the timestep is smaller than the droplet turbulence correlation time, a fluctuating
component is added to the local mean gas velocity when calculating each particle’s mass,
momentum, and energy exchange with the gas.3? When the timestep exceeds the turbu-
lence correlation time, turbulent changes in droplet position and velocity are chosen ran-
domly from analytically derived probability distributions for these changes.® Droplet
collisions and coalescences are accounted for,* and a new model for droplet aerodynamic
breakup has been installed.?® Volume displacement?? and thick spray effects on the
exchange rates3* are neglected.

Because of improvements to the code’s ease-of-use and versatility, for many applica-
tions, all required geometrical specifications, initial conditions, and boundary conditions
may be specified using the standard input alone. This is particularly true for internal
combustion engine applications. The mesh generation logic allows the computational
region to include cupped pistons and domed cylinder heads and to offset these relative to
the axis of the cylinder. In addition to two- and three-dimensional Cartesian and cylin-
drical meshes, the code allows the calculation of the flow in a single “sector” of certain
three-dimensional cylindrical configurations in which there is an n-fold symmetry about
the axis of the cylinder. This symmetry is often found in engine cylinders with multihole
injectors. Forinitial conditions, one can specify an axisymmetric swirl-velocity field with
a Bessel function profile and a specified swirl ratio. Standard boundary conditions and
rezone logic allow the mesh to follow the motion of a piston.

In response to many users outside the automotive engine design community, a num-
ber of other features have been incorporated in KIVA-II. These include gravitational
terms, the options to calculate with purely Eulerian or Lagrangian meshes, and inflow
and outflow boundaries. The latter are included only for the special case of inflow at the
bottom and outflow at the right or top of the mesh, but it is hoped that using these as
examples the user can easily modify the code for other inflow/outflow conditions. The user
is aided in the task of code modification by the modular structure of the program and a
new alphabetized epilogue that allows one to easily find the definitions and uses of
FORTRAN variables within the code.



II. THE GOVERNING EQUATIONS

In this section we give the equations of motion for the fluid phase; followed by those
for the spray droplets, and finally the-boundary-conditions. Forcompaectness-these are
written in vector notation with bold symbols representing vector and tensor quantities.
The unit vectorsin the x-; y-; and z-direetions-are denoted by i, j, and k- respectively. The
position vector x is defined by

==xi+yj+zk-,
the veetoroperator vis giverrby-

a9- 9-
— +j

V=i

g‘é}

uy dz-

and the fluid veloeity veetor uisgiven by

u=ulx,yz,di+vxyzdj+wkyzdk,

where tis time,

A. The Fluid Phase ‘
The KIVA-II equations can be used to solve for both laminar and turbulent flows..
The mass, momentum, and energy equations for the two cases differ primarily-in-the form-

and magnitudeof the transport coefficients(i:e:, viscosity,; thermal conductivity, and spe-
ciesdiffusivity), which are much larger in the turbulent case because of the additional
transport caused by turbulent-fluctuations. In the turbulentcase the transport coeffici-
ents-are-derived from a turbulent diffusivity that dependson the turbulent kinetic energy
anditsdissipation rate.

The continuity equation for species m is-

’O

T

at

+ Ve lp u)=V )]+p +p°8 1

,.__...__,

where p,, is the mass density of species m, p-the total mass-density, and-u the-fluid-veloe-
ity. We assume Fick’s Law diffusion with a single diffusion coeffici ent D. Equations
and source terms due to chemistry-p¢,  andthespray p® will be given later: Species 1-is-
the species of which the spray droplets are composed, and & is the Dirac delta function. By
summing Eq. (1) over all species we obtain the total fluid density equation-

oy
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ap .
—_ Y- = 5f 2
il (pu) =p", (2)

since mass is conserved in chemical reactions.
The momentum equation for the fluid mixture is

apu) 1 :
__gt___l_v.(puu):——évp—AOV(2/3pk)+V'0'+Fs+pg, (3)
a

where p is the fluid pressure. The dimensionless quantity a is used in conjunction with
the Pressure Gradient Scaling (PGS) Method.3¢ This is a method for enhancing computa-
tional efficiency in low Mach number flows, where the pressure is nearly uniform. The
user may opt not to use the PGS method, in which case a = 1. If the PGS method is used,
then a, which varies only in time, is determined in a manner described in Appendix A.

In Eq. (8) the quantity A, is zero in laminar calculations and unity when one of the
turbulence models is used. The viscous stress tensor is Newtonian in form:

Vu +Vu)l | +AV-ul. (4)

g=1n

The first and second coefficients of viscosity, i and A, are defined later. The superscript T'

denotes the transpose and I is the unit dyadic. F9is the rate of momentum gain per unit

volume due to the spray, to be defined later. The specific body force g is assumed constant.
The internal energy equation is

d . .
.%’t_lz +V-pu)=—-pV-u+(Q1—-A)o:Vu-V-J +Aops+Q°+ Q°, (5)
where [ is the specific internal energy, exclusive of chemical energy. The heat flux vector

J is the sum of contributions due to heat conduction and enthalpy diffusion:

J=—KVT—oD > h_V( Ip),

m

(6)

where T is the fluid temperature and k,, the specific enthalpy of species m. The source

terms due to chemical heat release Qc and spray interactions QS will be defined later.
When one of the turbulence models are in use (A, = 1), two additional transport

equations are solved for the turbulent kinetic energy k and its dissipation rate e:



dpk-
—t—+V (puk)= —2pkV-u+c6:Vu + V-

&

(—[—E—— Vkl—pe+W“’ (7)

e

1.
o:Vu—c ps+ch'i'. (8)
Bz,, 8. IR

i

0L o o) = — (& oeVou 4 v [
—az-i- .(pus)~—(3ca‘—c€3{pz -u + ](
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£ V?:i'+ ic
pr 1 i €.

P:*] (]
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These are standard k —¢ equations®® with some added terms. The source term (cg, - £ c¢,)
V-uin the e-equation accounts for 1eng+h seale changes when thera isveloeity dilatation.
Source terms involving the quantity WS arise due to interaction with the spray. Later we
will define WS and giveitsphysical significance.

The quantitiescy,, cg,, Cey, Pri, and Pre are constants whose values are determined
from experiments and some theoretical considerations. Standard values of these constants
are often used in-engine-calculations; and these are given: in Table D below:. A valueofe,
equal to 1.50 has been suggested,3” based on the postulate of length scale conservation in-
spray/turbulence interactions, and has been found to give good agreement with measure-
ments of diesel sprays.*

When the SGS turbulence-model is used; the value of ¢ is constrained to satisfy the
inequality

¢ 11 B2

o= A (9)
Prz,(ccqr_ % ) LSGS/

1.

Lgogisaninput SGS length scale whose value is typically taken to be 46x, where 8xisa._
representative computational cell dimension. Inequality (9) is-enforced by integrating-
Egs. (7) and (8) in time at all points and then setting € equal to the right-hand side of Eq.
(9) at points where the inequality is violated. Since k3/2/¢ is proportional to the k—¢ length
scale; Eq. (9)is a constraintthatthe turbulentlength.scale be less thanorequalLgps:

TABLE II.
STANDARD VALUESOF k-« TURBULENCE MODEL CONSTANTS

¢, = L44 Prpy=1.0
ceo = 1.92 Pre =1.3
Cey =— 1.0



Near rigid walls this constraint is always satisfied (see the Boundary Conditions section),

and thus the standard k-¢ equations are solved near walls. In regions where the length

scale is Lggs, the model reduces to a one-equation SGS model similar to that of KIVA.!
The state relations are assumed to be those of an ideal gas mixture. Therefore,

p=R,T > (o /W), (10)

m= 7 @ /o @0, (11)

D=2 (o, lo)e, (T), (12)
and

h (D=1 (D+RTIW_, (13)

where Ry is the universal gas constant; W, the molecular weight of species m; I,(T), the
specific internal energy of species m; and cpm, the specific heat at constant pressure of
species m. The values of h,(T) and cpm(T) are taken from the JANAF tables.?®

The chemical reactions occurring in the system are symbolized by

Sa x s>b x_, (14)

mr
m m

where X, represents one mole of species m and ap, and bp,r are integral stoichiometric
coefficients for reaction r. The stoichiometric coefficients must satisfy

Y@ -b )W =0, (15)

so that mass is conserved in chemical reactions. Chemical reactions are divided into two
classes: those that proceed kinetically and those that are assumed to be in equilibrium.
Kinetic reaction r proceeds at a rate @, given by

a’ b
(:)r = kfr H (pm/Wm) - kbr ﬂ (pm/Wm) . v (16)
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Here the reaction orders a’,,rand b, need-not-equala,,, and by, so that-empirical-

reaction orders can be used. The-coefficients kf; and kj, are assumed to be of a generalized

Arrhenius{orm:
4
by, = A, T Tep{- B /TY,
and
¢ (173
L = A T Texp{= EiTY: LAy
vy = Ay, T exp TR

where Efr and Epr are activation temperatures.
The ratesof equilibrium reactions are implicitly determined by the-constraint

conditions

= [ n 4 m T 2 (lg}
= {A PnT . YA/ (Y o <+ DT E. T4l LG8 .
K xp {A .,.n;,,A,.B_,lq SO+ D —Fu;!;,

where Ty = T/1000 K.
With the reactionsrates @, determined by-Egs. (16) or-(18); the chemical soarce-
term in the species continuity equation is given by

and the chemical heat release term in the energy equation is given by-

Q=5 Qo
. st T r
-

where @, is the negative of the heat of reaction at absolute zero,

= @ ' (90Y .
Q’r - 2 Lo ~ b’hzr)(‘Ahf)in ’ (22)
m

and-( Ahl}"/))mris the heat of formation of species m at-absolute zero.
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The transport coefficients in KIVA are taken to be

— 2
p=00.0 — Ao)puo +p, t Aocpk e,

A=A,
K= 2
Pr’
and
p=L , - (23)
p (o4

The diffusivity v, is an input constant, and ¢y is an empirical constant with a standard
value of 0.09. A Sutherland formula is used for yg;,:

A T¥?
1 (24)

Hair = T+A2 ’

where A1 and A9 are constants. The constant A3 is taken to be — 2 in calculations of tur-
bulent flow but can be arbitrarily specified in laminar flows. The Prandtl and Schmidt
numbers, Pr and Sc, are input constants.

B. TheSprayDroplets =

Solving for the essential dynamics of a spray and its interactions with a gasisan

extremely complicated problem. To calculate the mass, momentum, and energy exchange
between the spray and the gas, one must account for a distribution of drop sizes, velocities,
and temperatures. In many sprays, drop Weber numbers®® are larger than unity, and drop
oscillations, distortions, and breakup must be considered. Drop collisions and coalescences
have also been found to be important in many engine sprays.3**0-42 A mathematical for-
mulation that is capable of representing these complex physical processes is the spray
equation formulation.*3 In this formulation we solve for a droplet probability distribution
funection f, and in KIVA-II f has ten independent variables in addition to time. These are
the three droplet position components x, three velocity components v, equilibrium radius
r (the radius the droplet would have if it were spherical), temperature Ty (assumed to be
uniform within the drop), distortion from sphericity y, and the time rate of change dy/dt =

9. We keep track of the fundamental mode of oscillation corresponding to the lowest order

12



spherical zonal harmonic** with axis aligned with the relative velocity vector between the
droplet and gas. The dimensionless quantity y is proportional to the displacement of the
droplet surface from its equilibrium position divided by the droplet radius r. Droplets
break up ifandonly ify > 1.0.3%

The droplet distribution function fis defined in such a way that

f(xr 'v) ‘r, Td’ yi yi "‘) dv’drde dydj'

is the probable mumber of droplets per unit-volume at position x and time ¢ with velocities
intheinterval (v, v +dv), radiiin the interval (r; r+ dr), temperatures in the interval
(T4, Tq-+ dT¢); and displacement parametersin the intervals (y,y+ dy) and-(3, ¥ + dy)..

Two moments of fhave important physical significance. The liquid volume fraction 6,
given by

6= Jf f413n r¥dv dr dT gdydy,

is assumed to be small compared to unity in our equations. The liquid macroscopic density.
p'p, given by

by

wherepy istheliquidimicroscopicdensity, can nevertlieless be comparable to or larger
than the gas density p because of the large ratio of pgy to p. The density pyis assumed
constant. '

The time evolution of fis obtained by solving a form of the spray equation, .

af’ . v (I ¢ 3 . ail T a s [_;1\_:,: a;/ LA a’_: oy . A _::., /25}.
5* - '~xs{f‘v— -fv:-v-(fF%-r 5:—\/'1‘»' ﬂ-*a'T—'\frd;-r é—;\fy)-r 5\fy)—/w”+/bu. (£20)

d.

In Eq. (25), the quantities F, R, Td, and y are the time rates of change, following an
individual drop, of its velocity, radius, temperature; and oscillation velocity y. Expres-
sionsforthese will begiven later: The terms f&oa and 7;"5,1 are sources due to dropiet coili-
sions and breakups, and we now define these.

The collision source term fgoll,is given by

1 ,’ . . 2
foo1 = 5 [ ! fix, Vl”v?dri{y:’ryl’ D fle vy, Tdé,’,yz’yzt””(’lfi' rlv, = vyl



{0 (V) r) Td’ y’ .il) vl’ rl’ le’ yl’ &1) v2’ r2’ sz} y2’ :ilz)
—8(v—v)8lr—r)8(T,—-T )80 -y)8G -3}
1
—8(v — v2)8(r- r2)8(Td - Td )8 (y —y2)86' —-3"2)
2
dv, dr, dT a dy,dy, dv, dr,dT " dy,dy,, - (26)
The collision transition probability function o is defined so that odv dr dT g dy dy is the
probable number of drops with properties in the implied intervals that result from a colli-
sion between a droplet with subscript 1 properties and one with subscript 2 properties.
Two types of collisions are accounted for. If the collision impact parameter b is less than a
critical value b., the droplets coalesce, and if b exceeds b, the droplets maintain their

sizes and temperatures but undergo velocity changes. The critical impact parameter b,
is given by

2 _ 2 .
bcr =(r +r) min(1.0,2.4f(y)/We,) ,

fly) = y3 — 2.4y2+ 2.7y,

= =
y=rjr, where rysr

2’
We, = pdlv1 - v2| rI/a(Td) ,

and

Ty=———5— - @)

The quantity a is the liquid surface tension coefficient, which is assumed to vary
linearly between reference value ag at reference temperature T and zero at the fuel
species critical temperature T.,. The precise form for o is
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L2 R WUR- N | AT+ 5T |
v 11 T Tave | 4 % o
0= —0 5 8lr— (’r'%*i—i ri)é’]'é‘ l[v - l 0'!l'Td — PR l 6@~y )8G@ — 3,
(r,+ ro) ritry rytr,
g I‘Jrﬂl-é-r.tz .
po——— | [8(r — r)&(v— V&I, — T )8 —y)8G—3)
(r. + rz)z iy ! ! ¢ 4
L e cr
T8 =)W = V)8 (T, — T )8l - )80 - 3)Ibdb, (28)-
where
n b—b,
°v +rv +r(v—v) —
, -1 " + ry = b or
v, =
r?r+ "g,
and
3 3 3 b—b,,
riv, tryve t+ rl(vz— Vl) T3
_ 1 2 cr
Vo © S
r; -+ 2
Justification for Egs. (26)-(28) is given in Ref. 34.
The breakup source term fb is given by
fo= (v r. T 15,05 BT vor, T, 3,% 8 dv, dr dT  dy (29)
bu_ J - | 15 19 d) y‘l’ yl d’J’ l) 17 d?yl’ i 1 '1 dl yi'

The breakup transition probability function B is defined so that Bdv dr dTq dy dy is the
probable number of droplets with properties in the implied intervals that are produced by
the breakup of a droplet with subsecript 1 properties. The meaning of Eq. (29) is the follow-
ing: when a droplet’sdistortion y exceedsunity; it breaksup into a distribution of smaller-
drops given by B. We obtain the total source to f by multiplying the local flux of droplets
through thesurface y = 1 by B and integrating overthe entire surfacey = 1..

After breakup we assume the droplet radii follow a x-squared distribution:

i, (30)

%
)
I
WA=
N



where the Sauter mean radius ry, is given by

- S 31)

The product droplet velocities also differ from that of the parent droplet by a velocity with
magnitude w and with direction randomly distributed in a plane normal to the relative
velocity vector between the parent drop and gas. The quantity w is given by

w=%r3, . (32)

The precise form for B is

1
B=g(8(T,~T,)8(0)86) J 8lv — (v, + wn)ldn , (33)
1

where the integral is over normal directions to the relative velocity vector. Justification
for Egs. (30) - (33) is given in Ref. 35.

We now define the functions F, R, T4, and y that determine the trajectories of indi-
vidual droplets. The droplet acceleration F has contributions due to aerodynamic drag
and gravitational force:

[u+u’ -y

3
F=-2L (u+u' -vC,H+g. (34)
Spd

r

The drag coefficient Cp is given by

R—(1+1/6Red) Re, < 1000

e (35)
— d
CD—
0.424 Red > 1000
where
2 +u' —v
Re = plu+u | r
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and pg;iris given by Eq. (24). The gas turbulence velocity u’ is added to the local mean gas
velocity when calculating a droplet’s drag and vaporization rate. It is assumed that each_
component u' follows a Gaussian distribution with mean square deviation 2/3 k. Thus we-
assume

an

exp {-3|u ’l274'k}' ) (36)

v

Gy = @3 nk)”
The value of u’ is chosen onceevery turbulence correiation time ¢, and is otherwise held
constant. The droplet correlation time is given by

[ b pY2 1. \ -
t =min{ - ,¢ — —mm
turb ps g |u+u’—v|)’ (37)
where ¢psis-an empirical constant with value 0:16432: Thus 3,5 is the minimum-of an
eddy breakup time and a time for the droplet to traverse an eddy.

The rate of dreplet-radiuschange R is giverrbythe Frosslingcorrelation;*s-

®D), @ Y- v,
R=- - Sh,, (38)
20,0 1-Y]

where Sty is the Sherwood number for mass transfer, Yl* is the fuel vapor mass fraction
at the droplet’s surface, Y1 = p1/p, and (pD)q;(T) is the fuel vapor diffusivity in air. The
Sherwood number is given by

¢n(1.+ B )

d
Shy= (2.0 + 0.6 ReASch) ———= (39).
7
pair(é\‘) YI - Yl . & * .
where g, = —2° 214 B = ——— . Thesurface mass fraction Y;* is obtained from.
d pD, (“, - d 1,Y*
air"’ 1
. w,
YT, = - < (40).
o W4 W g - ‘\
- 0. pb(Td) -]

o
-3



where Wy is the local average molecular weight of all species exclusive of fuel vapor and
pu(Tq) is the equilibrium fuel vapor pressure at temperature Ty. To obtain Eq. (40), we
have assumed that the droplet temperature is uniform and that the partial pressure of
fuel vapor at the droplet’s surface equals the equilibrium vapor pressure. For the vapor
diffusivity in air we use the empirical correlation

D2
D), (N=DT ?,

where D1 and D9 are constants.
The rate of droplet temperature change isdetermined by the energy balance equation

4 3 5 Sy y 42
pdgnr celd—pd4nrRL(1‘d)—4rzr Qd’ (41)
where c, is the liquid specific heat, L(Tg) is the latent heat of vaporization, and Qg is the
rate of heat conduction to the droplet surface per unit area. Equation (36) is a statement
that the energy conducted to the droplet either heats up the droplet or supplies heat for

vaporization. The heat conduction rate Q is given by the Ranz-Marshall correlation:*3

K, D@-T)

_ 42
Q= — Nu,, (42)
where
- tn(1 + Bd)
Nud=(2.0 + 0.6RedPrd) T ,
u_ e (D
pr = -2 P~
K . (T)
awr
S
Kair(Tr) = f" + K ’

2

cp is the local specific heat at constant pressure and at temperature T = (T + 2T /3, and
K and K9 are constants.
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Consistent with the approximation that the liquid density is constant; we also
assume its internal energy Iy is a function of temperature alone. Thus the liquid enthalpy-
will have a small pressure dependence;

h(T .0y =1T )+ plp,, . (43)

(Il

Since the latent heat of vaporization L is the energy required to convert & unit mass of

o

iquid to vapor at constant pressure equal to the equilibrium vapor pressure, the liquid
and vapor enthalpies and internal energies-and L arerelated by

L(T )= h(T ) — /T ,p (T ) =1(T )+RT /W ~1,T )~ p(T Vp, . (44)
The equation for the acceleration of the droplet distortion parameter is

p (u+ u —v? 8al) Su,(T )

. 2 .
d r Py Py

o

whereuy(Tg) is the viscosity of the liquid. Equation (45), which is based on the analogy
between an oscillating droplet and a spring-mass system 0 is the equation of a forced,
damped harmonic oscillator. The external force is supplied by the gas aerodynamic forces
on the droplet. The restoring force is supplied by surface tension forces.. Dampingissupf
plied by liquid viseosity. A-detailed discussion of Eq; (45) may be foundinRef. 35.
We-arenowin a-position to give the exchange functions gs, I¢; Q “and Ws. These are
obtained by summing the rates of change of' mass, momentum; and energyof-all droplets

at position x and time t.3* Thus one obtains

58 = -J fp 4nr®R dvdrdT dydy ,

r' ¥

F = — J fo,(4/3nr°F + 4nr’Rv)dvdrdT dydy, (486)
[ .

Q= — | fo mr®RULT )+ 3v — WA+ 43 nr¥fe, T+ F - (v— w— w)hdvdrdl dydy ,
J N o T

and.

W= — .[ fo 430 F o dvdrdT  dydy.,

e d



where F' = F — g. Physically, W is the negative of the rate at which the turbulent
eddies are doing work in dispersing the spray droplets. Since u’ follows the Gaussian dis-
tribution (36) it can be shown that W< 0, and thus this term always depletes turbulent
kinetic energy.

C. Boundary Conditions

In this section we give the physical boundary conditions that are available as
standard options in the KIVA-II code. There are also numerical boundary conditions used
by the program in conjunction with inflow and outflow boundaries. Numerical boundary
conditions are extra conditions that are not required by the equations themselves but that
have been found through experience to be necessary in implementing computational
boundaries in fluid flow codes.!* To understand these numerical conditions requires some
familiarity with the numerical solution procedure in KIVA-II, and for this reason we defer
discussion of inflow and outflow boundaries until Sec. IV.K of this report.

In addition to inflow and outflow boundaries, two types of physical boundaries are
available in KIVA-II -- rigid walls and periodic boundaries. There are, in turn, several
types of rigid walls depending on velocity and temperature boundary conditions. The
velocity boundary conditions on rigid walls can be free slip, no slip, or turbulent law-of-
the-wall. Temperature boundary condition options are adiabatic walls and fixed tempera-
ture walls. In engine calculations one ordinarily uses turbulent law-of-the-wall velocity
conditions with fixed temperature walls. We now give in detail the rigid wall boundary
conditions for the gas-phase equations.

Velocity boundary conditions on rigid walls are introduced either by imposing the
value of the velocity on walls or the value of the wall stress o,y = o.n, where n is the unit
normal to the wall. On no slip walls, the gas velocity is set equal to the wall velocity:

K, | 47

where the wall is assumed to be moving with speed wq; in the z-direction. The wall
stress is then determined implicitly through Eq. (3). On free-slip and turbulent law-of-
the-wall boundaries the normal gas velocity is set equal to the normal wall velocity,

u-n=w _k-n, (48)
and the two tangential components of o, are explicitly specified. For free-slip walls the

tangential components of 6., are zero. For turbulent law-of-the-wall conditions the tan-
gential components are determined by matching to a logarithmic profile:
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I tw. c 49)
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1 7,1"2 Z:,<,R,

S

where 7- -7 _isthe Reynolds number based on the gas velocity relative to the wall,
l'lairclq)”

v = |u — wyeK|, which is evaluated a distance y from the wall, and u*is the shear speed,

whichrisrelated to the tangential componentsof the-wall stressby-

¢,~ (0, -nn= p(u*)z’g , (60)-
where v = u — wy,K.

In Egs. (49) and (50) it is assumed that y is small enough to be in the logarithmic
region or the laminarsublayerregionofthe turbulent-boundary-layer. The Reynolds-
number R defines the boundary between these two regions. The constants k, ¢y, R, and’
BimEq: (4%)arerelatedtothe k—emodel constants by-

/19 _
K=V —c)Pr
B £y 8y E]
and
B=R" - 1en(c, R™. (51)

For commonly.accepted values of the k—¢ constants; B-= 5.5, and cgy,, = 0.15; we obtain.
K =.4327 and R, = 114. A derivationof Egs. (49)-(51) is giverrin Appendix B.

Temperature boundary conditions on rigid walls are introduced by specifying either
the wall temperature or the wall heat fluxJ,,= —kVT-n. For adiabatic walls, we set J,
equal tozero. Forfixed temperature wallsthat arealsoeither free slipornoslip, the wall
temperature is prescribed, and J, is determined implicity from Eq. (5). For fixed temper-
ature walls using the turbulent law-of-the-wall condition, J, is determined from the mod-
ified Reynolds analogy formula

r 1 1 Y T
/P, —5- {=R
J * € . * c
o w 24 N (52)
pu¥c (T —T ) (. 1.y /Pr, Vel ’
P “per | — +{— — 1 R (>R
U e T Upe T e

where T, is the wall temperature and Pr, is the Prandtl number of the laminar fluid. A_
derivationof Eq. (52)isgivenin-Appendix B:

21



In addition to the wall heat loss, there is a source to the internal energy due to fric-
tional heating. Frictional heating occurs whenever turbulent law-of-the-wall velocity
conditions are used and has the form

fwzow' v

= pu*,

where f;, is the heating rate per unit area of wall.
In calculations of turbulent flow, boundary conditions are also needed for the turbu-
lent kinetic energy k and its dissipation rate €. These are taken to be

VYVeE-n=0
and
312
e=¢ L, (563)
Hoy

where k and ¢ are evaluated a distance y from the wall and

¢ 5
‘%, ~ IPr(c Ll—-c )] '
‘ gt f

Periodic boundaries are only used in KIVA-IT when the flow field is assumed to have
an N-fold periodicity about the z-axis. When this assumption is used, the computational
region is composed of points in the pie-shaped sector 0 < 6 < 2:/N, where 0 satisfies
cos® = x/Vx2 + y2and sin 6 = y/Vx2 + y2. The periodic boundaries are those for which

= 0and 6 = 2r/N. The conditions imposed on these boundaries can be inferred from the

assumed N-fold periodicity. For a scalar quantity g the requirement is that g(r, 0, z) =
q(r,8 + 2n/N, z), where r = Vx2 + y2. For a vector v the requirement is that v(r, 0 +
2n/N, z) = R.v(r, 6, z), where R is the rotation matrix corresponding to the angle 2u/N.

Boundary conditions are also needed for the spray equations, and we indicate here
what these are for a spray injector and for a rigid wall. When a spray droplet impinges on
arigid wall, we set its velocity equal to the wall velocity, and for purposes of calculating
heat and mass transfer with the gas, we set Rey = 01in Eqgs. (39) and (42). There is no heat
transfer between the droplet and wall. This is a provisional model for spray/wall interac-
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tions that will'undoubtedly change as this important probiens receives more-atiention
from engine researchers.

Another type of physical boundary for the spray equation is the spray injector. This
is-a point in space at which we specify a droplet mass flow rate and a distribution of drop-
let sizes, velocities, temperatures, and oscillation parameters.. An arbitrary number of

oy

spray injectors may be used in a single KIVA-I calculation. The mass flow rate foreach-

injector is constant-between times T'j;, - and TAml ndiszerootherwise: Twotypesofin:-

Linj.
jector size distribution are-available: monodisperse (8(r — 7)) orx-squared {1/7 exp( —r/7})..

In either case, the number-averaged radiug Fis independent of time. The velocities of

injected drops all have magnitude vjyj, which can De'maue’an’arbltrary function of time-
through tabularinput to the program. The distribution of angles of the droplet velocities.
are defined relative to a spherical coordinate system in which the positive z'-axis is the
spray axis, as depicted in Fig. 1. The direction of the spray axis can be arbitrarily speei--
fied and need not coincide with the z-axisof the flow field coordinate system. The polar-
angle ¢ of the droplet-velocity relative to the spray axis is distributed uniformly in the.
interval [¢in, doutl, and the azimuthal angle 6 is distributed uniformly in the interval

[0, 2r]. The temperatures of all injected drops have the same value Ty, - Ifthe droplet
breakup modelisin use, then all injected dropshavey = 0and ¥ = yinj, where yinj is the-
product of an input dimensionless-amplitude and dimensional frequency. A more detailed.
deseription of the droplet-injection procedure is given in the Computer Program section of
thisreport.

Fig.1. Sphericalcoordinate system usedto definethedistributionofdirectionsof
droplet velocities at a spray injector.



III. THENUMERICAL SCHEME

KIVA-II solves finite-difference approximations to the governing equations of Sec. II.
The equations are discretized both in space and time. Before specifying the numerical
scheme in detail, we discuss some of its general features and the principal ways in which
it differs from the KIVA numerical scheme.

A. Temporal Differencing

The temporal diffei‘encing is performed with respect to a sequence of discrete times
tn(n =0,1,2,..). The time interval Atn = ¢n+1 — ¢nisthe timestep, and the integer n is
the cycle number. The latter is displayed as a superseript, so that @” denotes the differ-
ence approximation to the quantity @ at time i». When At appears without a supersecript,
Atn is understood. The difference approximation to the derivative dQ/dt is the first-order
expression (Q"+1 — Qn)/At.

Itisin its temporal difference scheme that KIVA-II differs most from KIVA. Just as
in KIVA, acycle is performed in three stages, or phases, but the terms differenced in each
phase and their temporal differencing have changed considerably. Phases A and B to-
gether constitute a Lagrangian calculation in which computational cells move with the
fluid. Phase A is a calculation of spray droplet collision and oscillation/breakup terms and
mass and energy source terms due to the chemistry and spray. Phase B calculates in a
coupled, implicit fashion the acoustic mode terms (namely the pressure gradient in the
momentum equation and velocity dilatation terms in mass and energy equations), the
spray momentum source term, and the terms due to diffusion of mass, momentum, and
energy. Phase B also calculates the remaining source terms in the turbulence equations.
In Phase C, the flow field is frozen and rezoned or remapped onto a new computational
mesh. For the detailed description of each phase that is given later, it is convenient to
define intermediate quantities that have been partially but not fully updated. Such
quantities are identified by superscripts A and B. Thus, for example, Q4 is the computed
value of @ at the end of Phase A. (Superscript C is not needed because it is equivalent to
superscript n+1.)

B. Spatial Differencing

The spatial differencing is based on the ALE method,!?18 which in three dimensions
uses a mesh made up of arbitrary hexahedrons. Spatial difference approximations are
constructed by the control-volume or integral-balance approach,!? which largely preserves
the local conservation properties of the differential equations.

The spatial region of interest is subdivided into a number of small cells or zones,
the corners of which are the vertices. Together, the cells constitute the mesh with
respect to which spatial differences are formed. The vertices need not be stationary, but
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may move in.an arbitrarily prescribed manner. Thiscapability includesthe-Lagrangian:
and Eulerian descriptions as special cases. In the generalcase, the cells are asymmetri-
cal; a typical cell is shown in Fig. 2. The vertices are conventionally numbered as shown.

The cells are indexed by integers (i, j, k), which may be regarded as coordinates in
logical space. The indices (i, j, k) also label the vertices, with the understanding that
vertex (i, ], k)isvertex 4 for cell (i, j, k). The Cartesian coordinates of vertex (i, J, k) are’
(xijk, Yijks 2ijk), Wwhich in general depend on thetime ¢. Thus the position vector to vertex-
(i,, k) is

e — xS} 54
X, = % ity itk (54)

ijk j

The “center” of cell (i, j, k) is defined as the point with coordinates

Xk
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Fig: 2. Typical finite-differencecell.



where (xq, ya, 2q) are the coordinates of vertex a of cell (i, j, k). In general, the point (xCijk,
¥Cijk, 2¢ijk) is not the center of mass or volume of cell (i, j, k).

Itis convenient to define auxiliary cells centered about the vertices. These cells are
called momentum cells as their main use is in differencing the momentum equations.
Momentum cell (i, j, k) is centered about vertex (i, j, k). In contrast to regular cells, which
have six faces, momentum cells have twenty-four faces, each of which is comparable in
size to one-fourth of a regular cell face. Three of these twenty-four faces lie within each of
the eight regular cells which share common volume with the momentum cells. The
portion of momentum cell (i, j, k) lying within regular cell (i, j, k) is shown in Fig. 8. The
points of intersection of the momentum cell faces with the regular cell edges are defined as
the midpoints of the regular cell edges. The points of intersection of the momentum cell
edges with the regular cell faces are then defined implicitly by the requirement that the
regular cell face be partitioned into four subfaces of equal area by the momentum cell
faces. The corners of the momentum cells are then implicitly defined by the requirement
that the overlap volume between a regular cell and a momentum cell centered at one of its
corners be one-eighth of the regular cell volume. In general, the momentum cell corners
do not coincide with the cell centers defined by Eq. (55). The momentum cell corners and
the intersection points of momentum cell edges with regular cell faces are not actually
solved for as they are not needed.

The location of velocities at cell vertices in the ALE method is convenient because no
interpolation is required when determining vertex motion in the Lagrangian phase of the
calculation, but it has a major drawback. This is that ALE method solutions are notori-
ously susceptible to parasitic modes in the velocity field. A major reason for this is that
pressure waves tend to propagate along cell diagonals rather than via adjacent cells. 1718
A “checkerboarding” effect is thereby created in the pressure field, with associated irregu-
larities in the velocity field that are usually suppressed by the introduction of a numerical
damping called node coupling.!®!7 In a major improvement to the ALE method, we have
alleviated the susceptibility to parasitic modes by the introduction of velocities centered
on cell faces.? Vertex velocities are retained, and momentum associated with the vertices
is conserved, but normal velocity components on cell faces are used to compute cell volume
changesin Phase B and fluxing volumes in Phase C. The resulting scheme greatly reduces
the need for node coupling, and many problems can be run with no node coupling at all.

Accelerations of the cell-face velocities due to pressure gradients are calculated by
constructing momentum control volumes centered about the cell faces. Like the momen-
tum cells the cell-face control volumes have twenty-four faces. Referring to Figs. 2 and 3,
the cell-face control volume for the left face of cell (i, j, k) is composed of those portions of
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«. 3. Theportion-of momentum-cell (i;j; k)

lying within regular cell (i, j, k). The
three momentum cell faces lying
within the regular cell are shaded:
Each momentum cell has twenty-
four such faces in all.

the momentum cells of vertices 3, 4, 7, and 8 that lie in regular cells (i, j, k) and (i -1, j, k).

Control volumes associated with the other cell faces are defined analogously.

The volume of any momentum control volume may be calculated once the volumes of

the main computational cells are known. The volume of cell (i, j, k) is denoted by Vjp and

is calculated by the following formula:*®

1 &
Vi, o=— > xC
gk 12 = Tava’
a=1
where_
O = . —— —
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t Y2yt V2o — Vi, VPe — Vg T YR~ YZs T VPt Vi)

Co=023t y12, = ¥ 25— Y12 =~ V21 — Y524 T Vg%6 T Vofq — V2 T V43

€.
¥

Y I

E17 Vs T Vs T Ve T Vi T Y

Co= =02y =52 = Y —YFg T VR T VEg T Y@ T V29— Vg

T YFR T IFe T YEy T YA T YR T e T YAy T Y T V)

27



Co= — 02y y23 — Y125 — ¥ \2g — Yoy T Yoy — V5% — Vg2 T V7
+ Y2y T Y7, — YsPg — YPy T Vg T Vg2 — YgZg T YgZs = YeEo)
Co=(yy2g —y12, T Y2 — Y 2g — Yo# T YFg T V2 — Vg — V&

= Yo T Vg T VEe — Vg T YRy T VP T VEy T VP T

Co= 12y = 2125 = Y| T V23 = Vo5 + Vofy — YZa T V27 T V5%,
t Y2y = ViPg — YgPg ~ Vg ~ Vs Y Yt Vgt ¥ — V) s
Co= Uy — Vo2 = YoPa T V24 — VoPe ¥ VZg — V23 T ViZg T V6%
—YgZgt Y@y T Yy — Vs~ Yty T Yty ~ YgPa T Vs T 2

Co=— (2, =y 25 — V2, T Vg = Y2 T V23— YEs T YE T Yy

t Y52y~ VsEe ~ Ystq t Vs ~ VePq T VP~ Vs T V75 ¥ V26 5D
and the summation extends over the eight corners of cell (i, j, k).

It is also necessary to know the x-, y-, and z-projections of the surface areas of the cell
faces. Since each face is common to two cells, there are three independent faces per cell.
These are conventionally taken to be the left, front, and bottom faces of the cell as viewed
from the perspective of Fig. 2. These faces are shown in Fig. 4. The conventional direction
of their vector area elements is outward from the cell, as shown in Fig. 4. The area projec-
tions of these faces are calculated as follows:*®

A, =—050;-v)C — g —y) g —2) + g~y g—2) = Oy =y (g — 21,

A, = +0.5[(x3—x4)(28—z4)—(x8—x4)(z3—z4) + (xs—x7)(z3— 27)—-(x3—x7)(z8—-z )N,

4% 7
Ap, = =051 —x) g —y,) — (g = %) (g = ¥ + (xg = x) Oy = ) = by — %) 0y — 371,

Afx = 4050y, ~y) ey —2) — g =y )G —2) + by —y)(z,—2) — O, —y) ey — 2l ,
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A'fy = =0. '[(xl - x,) lzs z ) _ (x x4) (z:l - 24) + (ac8 - x5) (21_ z5) - (Jc1 - xs) (28 - 25)] ,
A, = +0.51x, —x) b, —y)— Gy — 2 )by =)+ &y — 2 ) &y — y) — (&) — 2 )l — ¥ )i

Ap = 1050, -9)G, —2) — 0, —y) ey —2) + b, =y ey~ 2)) — by — ¥} 2, — 2 )i,

Abyf: +0.50z; -z ), —x) — (2, — 2 )(xg = x) + (z) — 2)) (r; = x)) — (2 — 2 ) (x| ~ 2],

Ay, = =051l -yl —x) = O =90 —x) + O =y g—x) =y — ¥ &, — Xl (58)
where subscripts £, f, and b refer respectively to the left, front, and bottom faces. When-
needed, the subscripts r, d, and ¢ will be used to refer respeetively to the right, back, and
top faces of a-computational cell. These area projections enable us to define area vectors
A, associated with the faces a of each regular cell. It is convenient to associate Ay with
both the face and the cell; so that Ay may be considered to always point outward from the
cell underconsideration. Thus; fora given face, the sign of A, depends on the side of the
face from which itis viewed. Consider, for example, the left face of cell (i, J, k), as shown
in Fig. 4, and compute A¢y, A¢y, and Ag, by Eq. (58). From the point of view of cell (i, j, k),
the vector A, for this faceis Agyi + Agyj + Agk. Butofcell (i—1,7, k), the vector A for
this facedis — Agxd — Agyj-— Agzk. Similar considerations apply to right, front, back,
bottom, and top faces.

Similarly, the outward area vector associated with face a of a particular momentum-
cell isdenoted by A’,, and the autward area vector of face a of a-cell-face control-volume is-
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\\// BOTTOM 3 Fig. 4. Cell faces associated with cell (i, j,k).
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denoted by A"q. We shall not write out explicit expressions for the components or projec-
tions of these momentum cell-face area vectors, as it will always be possible to eliminate
them in favor of the A as discussed below.

In the finite-difference approximations of KIVA, velocities are fundamentally
located at the vertices, so that

y. (69)

U = 0 Y 2

Thermodynamic quantities are located at cell centers:

Qijk = Q(xfjk,yz.k,z;k) , (60)
where @ = p,p, T, I, or pm, as well as k and ¢. Quantities needed at points where they are
not fundamentally located are obtained by averaging neighboring values.

Spatial differences are usually performed by integrating the differential term in
question over the volume of a typical cell (or momentum cell). Volume integrals of gradi-
ent or divergence terms are usually converted into surface area integrals using the diver-
gence theorem. The volume integral of a time derivative may be related to the derivative
of the integral by means of Reynolds’ transport theorem.® Volume and surface area inte-
grals are usually performed under the assumption that the integrands are uniform within
cells or on cell faces. Thus area integrals over surfaces of cells become sums over cell faces
(or subfaces):

P dA—> STF -A (61)
I F-dA ? Pq Aa
When differencing diffusion terms for cell-centered quantity Q, it is necessary to
evaluate (V@) - Aq. Referring to Fig. 5, this quantity is approximated as follows. The
points x¢ and x, are the centers of the cells on either side of face a, and x;, x5, Xf, and xy
are the centers of the four edges bounding face a. We first solve for coefficients agr, asp,
and afg such that

ae’_(xe—xr)+atb(1l(t—xb)~i-afd(1'£f—xd)=A(1 . (62)
Note that since the mesh may be nonorthogonal, the vector x¢ — x, need not be parallel to
Ag, and thus as and afg may be nonzero. The finite-difference approximation to (V@)q * Aq
is obtained by dotting both sides of Eq. (62) with (VQ)y and ignoring terms of second and
higher order in the cell dimensions:
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- (@ - Q) +a,@Q ~ Q“”“fd‘ (63)

In Eq. (63)Q;isthe simple average of the values of Qin the four cellssurrcunding-cell-
edge “t,” and Qp, Qf, and Qg are defined analogously.

Area integrals over momentum cell faces are ordinarily convertedinto area inte-
gralsoverregularcell faces by the following procedure. Let ¢ be a quantity thatis uni-
formrwithin regular cells; and consider the volume of overlap between regular cell (1, j,k)
and the momentum cell associated with one of its vertices. Three faces of this overlap
volume (call them a,b,c) are faces of the momentum call in question, with outward area
vectors A'g, while the other three (call them d,e,f) are surfaces of regular cell (i, j,k), with
outward area vectors 1 A,. But the divergence theorem shows that the integral [ dA over
the entire surface of this overlap volume is zero, so that

A F A+ A = — 2 (B + A, A (64)
Thus the integral [ Q@dA overthe three momentum cell faces in question my be repre-
sented by

| QUIA=Q A + A +A)=—~Q (A, +A +4A), (65)-

“ijk d- e

ot et

so that the area vectors A’y never need tobe explicitly evaluated. A similar procedure is
used to express the outward normal areas A", of faces of the cell-face control volumes in
terms of the regular cell face areas A,.

The mass of cell (i, j,k) is denoted by M and is given by

Fig.5. The six points used to define the
gradient of cell-centered quanti-
ty @ on cell face a.
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Mo =PV - (66)

The mass of momentum cell (i, j,k) is given by

’

M. =

M., +M + M + M + M
ijk

ijk i—1,jk i—1,j-1k i,j- 1k i, j—1

00 | =

67
+Mi—l,j,k—l+Mi——1,1—l,k—l+Mi,j-—l,k—1)' (67)

The mass of left cell-face control volume of cell (i, j,k) is given by

gt
It

M+ M) (68)

“~
DN | =

and the mass of other cell-face control volumes are defined analogously.

C. Stochastic Particle Technique

A very efficient and accurate method for solving for the spray dynamics is based on
the ideas of the Monte Carlo method and of discrete particle methods. In discrete particle
methods, the continuous distribution fis approximated by a discrete distribution f:

NP
fr= >_1 NPS(X—- xp)S(v - vp)8(r— rp) S(Td— po)ﬁ(y—yp)fi(if—j’p) . (69)
p:

Each particle p is composed of a number of droplets N, having equal location x,, velocity
Vp, size rp, temperature po, and oscillation parameters y, and y,. Particle and droplet
trajectories coincide (thus, for example, dxp/dt = vp and dv,/dt = Fp), and the particles
exchange mass, momentum, and energy with the gas in the computational cells in which
they are located. The finite-difference approximations to the ordinary differential equa-
tions for the particle trajectories and for the exchange rate functions of Eq. (46) are given
in Appendix C.

Our method is a Monte Carlo method in the sense that we sample randomly from
assumed probability distributions that govern droplet properties at injection and droplet
behavior subsequent to injection. We now show how this random sampling is done. Let us
assume that we are given the distribution function flx) corresponding to the random vari-
able x (x; < x < x9). The distribution function is defined by dN = flx) dx; i.e., thisis the
number of droplets in the interval dx about the value x. Let us define the random variable
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I Y D)

and we note that dN = dy. Hence,the number of droplets is uniformly distributed with
respect to the variable y. Commonly one has available random number generators witha:
uniform distribution in the range from zero to one. We therefore-sample from thisdistri- -
bution, scale by

X

2
- flx)dx

x.
1

———

to obtain y, and then invert to obtain x, which then will be distributed according to flx).
Depending on the form of the distribution function, the integral and its inversion may be
performed analytically or, failing that, by a numerical method. This sampling procedure
is.used-in the dropletinjection-calculation; which-is-deseribed in Appendix B; in the drop-
let collision calculation, which is deseribed in Appendix E; in the droplet breakupcalcula-
tion; describedin-Appendix F; and when a new value of the gas turbulence velocity u’p
mustbe chosen. In the latter case, since each component of u’p, follows a Gaussian dis-
tribution G(u') and since

x

CGW)dd' (70).

f
erf(x/V 4g/3) = 2 |
40

it follows that we must invert the error function erf. This is done by storing values of the
inverse error function erf~! (y) evaluated at intervals of 0.05 from y = 0.0-t0 y = 1.66.
The value of erf—1 (1.0) is taken to be 2.0. Values of erf—!(y) at-intermediate valuesofy
are found by linearinterpolation. If y isarandom number between 0.0 and 1.0, then 2y — 1
is a random number between —1.0 and 1.0 whose magnitude and sign determine the mag-
nitude and sign of u':

u' =V 4q/3 sign 2y — l)erfﬂl(l2yr=—71!)r. (71).

Of course, a new-u'yis-only sampled once every correlation time iz, [see Eq. (37)1..

When the turbulencecorrelation time t;,,5 of a spray particleis lessthan the compu--
tational timestep At, the droplet equations cannot be integrated directly since the particle
“sees” many valuesof u’; in a single timestep. Instead we add random turbulent particle

position and velocity changes that are chesen from distributions derived-assuming-the-
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droplet experiences a linear drag law. When At > #;,,5, we also set u'p, = 0 when differ-
encing the droplet equations. Appendix G discusses briefly how the distributions of turbu-
lent displacements are obtained, and a detailed derivation may be found in Ref. 33.

D. State Relations

The quantities I,,(T) are obtained from the JANAF tables3® and are stored in tabu-
lar form at intervals of 100 K. A simple linear interpolation is used to determine the
Im(T) at temperatures within the range of the tables. The quantities ¢y,(T) are simply
approximated by differences between adjacent tabular values of I,,,(T"), divided by 100 K.
The temperature T determines the internal energy I via Eq. (11). Conversely, I deter-

mines T via the inverse of this relation. Thisinversion is performed by a simple linear
search algorithm which takes advantage of the fact that (3I/aT),,, is always positive. Let
T,=100n(n =0,1,2,...), and choose the initial value of n so that T, is a reasonable esti-
mate of the correct T. One then evaluates I, = I(T,,) from Eq. (11). IfI,, > I, nis reduced,
and if I, +1 < I, nisincreased. The search proceeds in this way until I is bracketed by I,
and I, +1; T'is then evaluated by linear interpolation between T, and T, + 1.

The liquid fuel internal energy I¢(T), the liquid viscosity pe(7), and the equilibrium
vapor pressure p,(T) are also stored in tabular form. The liquid latent heat L(T) is first
stored at intervals of 100 K, and then the values of Ip(T') are calculated at intervals of
100 K from Eq. (44) and known values of L(T), p,(T), and I1(T). Because the vapor pres-
sure p, and liquid viscosity pe vary rapidly with temperature, their values are stored at
intervals of 10 K up to the fuel critical temperature Tr;;. Latent heat, vapor pressure,
and liquid viscosity tables for many fuels can be found in Refs. 51-53.

E. Lagrangian Phase Difference Equations

With the above background, we are now in a position to specify the KIVA difference
equations. Itisconvenient to give these first for the Lagrangian phase and then for
Phase C or the rezone phase. In the equations of this section, we use implicit methods to
difference the terms associated with acoustic pressure wave propagation and diffusion of
mass, momentum, and energy. In the next section we tell how these coupled implicit
equations are solved.

1. Mass Density Equations. The Lagrangian phase difference approximation to
Eq.(1)is ‘

B B n n
e Vir = Pl Vi

At

- n B A n .C X n
=2 @D VIO, Y, + (1 =@ )Y | AL+ 10,y + Py St Vige -
. .

(72)
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The mass fractions are related to the densities by
Y* = p¥7p* (73)
Y'fn =p /0", (73)

where x = n, A, or B. The Phase A mass densities will be defined shortly. An important
feature of Eq. (72) is the use of variable implicitness parameter ¢p in differencing the dif-
fusion term. Parameter ¢p varies in space and time and is defined at cell centers. Its
value, which lies between zero and one, depends on the local diffusion Courant number

At
Ax

o

Q
I
o %=

where Ax is a measure of the cell size. When Cyis small compared to unity, ¢p is zero and
a fully explicit difference approximation is used. When Cyis large compared to unity, dp
is close tounity and an implicit formulation is used. The exact expression for ¢, which is.
chosen to ensure numerical stability, is given in Appendix H.

The Phase A density of species mincludes contributions due to chemistry and spray

evaporation:
A n
R i ey 1 5 (74)
AL =ik TPk O

The chemistry source term (p, ) ik is given by Eq. (20) with &, replaced by (c,4) ik The_
integration method for kinetie reaction rates @,.is describedin Appendix ], and thatfor
equilibrium reactions is described in-Appendix J. Thefinite-difference approximation to
thespray mass source term p i " isgivenin Appendix C.

Summing Eq. (72) over all species m gives the following Lagrangian phase
difference approximation to the mass density equation (2):

B B’ n n

S Vo, —pl, V.

ijk " ijk ijk.. ;;k,,: ps v . (75)
Ab vk o ijk

This shows the total gas mass in a cell changes only due to the spray-source. Similarly-
summing (74) over all species-and comparing with (75) shows that Phase B-cell masses are
known-after Phase A:-

B B _ A yn _ aA _ 2B (76)
PiieVije = PinVije = Mijp = My, -
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Equation (76) can be combined with (72) - (74) to obtain

B A
B (Ym)ijk - (Ym)ijk

ijk At

= > DY VIp, Y2 + (1 — p Y] - A" (77)
a

Equation (77) is solved in Phase B.

2. Momentum Equation. The Lagrangian phase difference approximation to the
momentum equation (3) is the following:

nB B n
M, ijk yk - r )yk ijk

— _ ALA
v = (a)thbpp +(1 = ¢ )p" (AN A}_‘ﬁpk(A

+ 2 [9,00%) + (1 = ¢ o w™ly- (AN (78)
B

(R T S u ) + g(M) (M’)Z.k (ANC)l.jk/At .

The index P refers to the faces of momentum control volume (i, j,k), whose normal area
vectors at time tn are (A')g". The pressure p, turbulent kinetic energy k, and viscous
stress tensor ¢ are regarded as being uniform within the regular cell in which face f lies.
Thus the A’ can be eliminated in terms of regular cell face areas A as described in Sec. B
above. This makes it convenient to evaluate momentum changes due to surface stresses
by sweeping over cells rather than vertices in the computer program.

In differencing the pressure gradient term, variable implicitness parameter ¢, is
used. Parameter ¢p, plays a role for the acoustic mode terms analogous to that of ¢p for
the diffusion terms. Appendix H gives the exact expression for ¢p, which depends on the
sound speed Courant number

o = o

s Ax ’
where cis the isentropic speed of sound.

The PGS parameter an, which is used to artificially raise the Mach number in far
subsonic flows,3¢ depends on time but not on space. The formula used to determine an is
given in Appendix A.

The viscous stress tensor ¢ is a weighted average of the stresses based on time level n
velocities and those based on the Phase B velocities. This weighting employs the same
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variable implicitness parameter $p thatis usedfor the massdiffusion terms. The value of
o dependson-velocity gradients whose difference approximations are given in Appendix K,

The quantities R';jp and S';j; are associated with theimplicit coupling of the com-
puted gas-and drop velocities. One caninterpretS’;jr asan added mass that arises be-
cause forces on momentum cell (i, j,k) must accelerate the droplets in addition to the gasin
that cell. The appearance of S'jj;in (78) isrelated to the well-known lowering of the sound-
speed in two-phase flows.3* The evaluation of R’ ijk and Sjjr is described in Appendix C..

Although we have greatly reduced the susceptibility of KIVA solutions to parasitic
velocity modes or alternate node uncoupling, in some problems the velocity field may de-
velop persistent alternative-vertex irregularities of small amplitude. Such irregularities
can usually be eliminated by using the alternate node coupler deseribed in Appendix L
The effects of the alternate node coupler are represented by the term (ANC);jz, which is-
the sum overall regular cells surrounding vertex (i, j,k) of the terms 8u ;%" given in
Eq.(1-4),

The Phase A vertex velocities include changes due to the spray momentum source,
gravitationalacceleration, and the alternate node coupler:

[(M’) +S ] - M

uk k -

SR JAL+ g, — (M), (ANC), AL (79)

3: Cell Pace Normal Velocities: Imadditiontovertex velocities; in Phase B'we-

use face-centered normal velocities. We compute accelerations of these velocities due to
the thermodynamic and turbulence pressures p-and %pk, and the resulting face-centered:
normal velocities are then used to calenlate the Lagrangian phase cell volumechanges:
This procedure has been found to reduce dramatically the susceptibility of computed solu-
tions to alternate node uncoupling.!®!” The reasons for this improvement are discussed in.
Refs. 47 and 48.

Wenowdescribe how the face-centered velocities are computed: Rather than dealing
directly with face-centered normal velocities, it'is more convenient to introduce a factor of
the cell face area. Thusthe variables we use are

(wh), = u A . _ (80)-
An equation for u - A may be derived as follows. Consider the momentum balaneefor con-
trol volume V thatmoves with the fluid:

pudv=F, (81)

glo

f
)
v
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where F is the sum of all forces on V. By dotting this equation with area element A thatis
moving with the fluid, we obtain

D DA
— [ pu-AduzF-A+—-J pudv . (82)
Dt D¢

In curved meshes, the last term in this equation gives rise to Coriolis and centrifugal force
terms.

Equation (82) is differenced in the following manner. We initialize (uA)q using
vertex velocities ut that differ from the Phase B velocities only in that terms in (78) are
omitted that are associated with the thermodynamic and turbulence pressures p and £ pk:

B 3
u.., —u
' iik 1
(M, +8 |- YR
ik ik At ((1”)2

> o,p% 41— o)p"I AN — Ay > Fogkpan; . (83)
B B

Alternatively, ut differs from u4 by the addition of the viscous term contributions:

t A
u., — u..

nB ’ yk Uk _ < B n N
(MG, + S ) == = 2 10,0 ) + (1 = g0 (WMl (A . (84)

B

The quantities (uA)q are initialized by

(uA)f1 =1 (ui + ui + uz + ufi)~ AZ , (85)
where a, b, ¢, and d label the vertices that form the four corners of cell face a. This label-
ing convention will be understood in what follows.

The finite-difference approximation to (82) is then given by

wA)] — @A),

5 -
@ + S ——

= = 3 {0,p% + (1 — o )p"a" + A% 0"k} (AN2- A,
Y

AZ—AZ uZ+uZ+uZ+u; B
+ : (M8 +8] . (86)
At 4 a a

The indices y refer to the faces of cell face control volume a, whose normal area vectors at
time tn are (A"),". In computing (uA)gB the A" that do not coincide with regular cell faces
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are eliminated in favor of the regular cell face areas as is described in Sec. B above. For.
faces y thatlie entirely within.a regular cell, the pressures-and values-of ¢, are taken to be-
those at the regular-cell center. Forfacesy thatlieon aregular cell face, the pressure on.
facey isobtained by averaging the values,of;dgpla"}'i-, (I — &p)pn associated with the regu--
lar cells on either side of the cell face.

It-is necessary to define-an added mass S,” associated with the spray droplets in cell-
face control volume a. This quantity is given by

+ ! -
S + 8. +S + 5

LI S— (87)
(M’)B+(M’) +(M') +(M’\B a

(1" a

D
a

Toapproximate dA/dtin Eq. (82) we have used an.area change based on-the time-
level n vertex veliocities,

Al = A (x"+u"A) (88)
a a
that is, the areas A, are computed using Eq. (58) with the vertices located at xn -+ un At.

4. Internal Energy Equation. The Lagrangian phase finite-difference approxi-
mation to the internal energy equationisthe following:

B (B n yn n B B n
Moialie = Ml _ P T Pie Vie™ Vi s - o (B vl
At ' 2 At - Aglepotut:
ny, n n N o B e n
+ (1 =)o @YU, VE + D> KIVIO TP + (- ¢ T, - A]
a
n n B A | n
+ Z. (pD), {)—- »l(Ta)v'[¢qu+ (17_7¢D}Ym]u 'Aa
m
+AM3A+V"(Q +Q°.). (89)

ijk i ijkE

The temperature used for the heat conduction calculation is a weighted average, using
variable implicitness parameter ¢p, of the Phase B temperature TB and an intermediate
t@mpﬂaiura'_-’! that we define shortly:

The Phase A internal’energy I4 contains changes due to chemical heat release and.
the spray energy source:.
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Mgklgk ~ ML — VO + O (90)
At - ijk(Qijk + Qijk) )

The chemical source Q ijkc is given by Eq. (21) with @, replaced by (6,4) ijk: The method for
a}pproximating (04 ik is described in Appendices I and J, and the difference formula for
Q%is given in Appendix C.

The temperature T used in the diffusion term differencing is based on an internal
energy that also includes updates due to enthalpy diffusion and turbulence dissipation:

¢ A
B _ijk ik _ B A nl n B Ayl an 91
My~ =AMt > (p[))a‘z h (THVIG YD + (1 — ¢ Y2 1 A" (91)
o} m

m-a [a}

To calculate T it is assumed that all heat addition up to this point in the computational
cycle has occurred at constant pressure. Thus the temperature change is related to the
enthalpy change by

t _n n n (92)
e = Bije €T = Ti)
where
B ;t n in __ B 4t n gn (93)
Mijkhijk - Mijkhijk - Mijklijk - Mijklijk :

By substituting for h,-jk‘ in (93) using (92), solving for '—;'ijk, and using the fact that hjj" =
Ijjp"™ + pijr™pijr", we obtain the following equation for T'jjk:

. 1 1 1
_mn - _qn n R,
T =T+ o I‘ijk I+ pijk( " - >] . (94)

Dijk Piik  Pijk

By using (89) - (91) we can derive

B t n B B n
rr,—r. p.,+p., V., -V’
B ik ik _ ijk ijk " ijk ijk B, v. B n g n
ijk—_-—_At = - 2 Y +(1—A0)[<1)Do(u }:Vu +(1-—-¢D)0(u).Vu |
n B ' pd n
+ > KMVIe, TP + (1 - ¢ )T - A7, (95)
a
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an equation thatissolved in Phase B-and will be referred-to when we describe the solution
procedure. Forthe differencing of the viscous stresses o and the velocity gradients Vu in
(95), the reader is referred to Appendix K.

-

5. Turbulence Equations. The Lagrangian phase difference approximation to-

the turbulent kinetic energy equation (7)is

gk~ Mkl s Vir— Ve B
HR —__ 2 A Y2 TR n. PO e ) .
At == R0 T oAy W fdk k) T VD),
n gn
v oPkB Dy Ay . B _ik B 578 n 96)
+ > Pr, PkB o+ - P A - ML, =k oy v (96)
¢ ijk

The difference approximation to the dissipation rate equation (8) is

B & 2 en. N /B Ve
M — M e, Vo, - V
ijk~ ij Uk*ijk’ﬂ___h (e —¢ ) B ijk (1 _ +f
At TN, T P T A fin) ijk Uk‘
u’ et
< a LLB, - . ik
L P— + (1 — q> Je ] “A e —— (VD)ijk
e L vl.]k
B z;g & By i E'JE (973"
—c M7 TC LVv ) . 97)
£y ifh- Eijk- :.jk
ijk : ijk

The quantity fjjz is zero or unity depending on the sign of the cell volume change
Vii B _ vyt
Lk~ ijk

{ V;‘J;k >0 (98).
i

! UE ]
0 otherwzse

This prescription for fjj is chosen to avoid negative computed values of k and ¢ when there
are large volume changesduring the Lagrangian phase.
Viscous dissipation of mean flow kinetic energy is represented by the term (VD);j:

VD), = VI e Tul + (1 - Mo ™ T, (99)



The difference approximations to the viscous stresses ¢ and velocity gradients Yu are
given in Appendix K.

In differencing the diffusion term, we use a weighted averaged of the Phase A values
kA and €4 and the Phase B values kB and eB. The amount of implicitness is specified by
the parameter ¢, which is chosen in a manner described in Appendix H.

The Phase A values k4 and ¢4 differ from the time n values because they include the
effects of spray source term W

A M" "
Mukkuk L_]kkijk Ws (100)
At = )ljk ik’
and
B A n .n A
M~ ijkeijk 3 (Ws) - Eijk (101)
At ljk le k’l )
ijk

6. Volume Change Equation and Equations of State. The volume change of a

computational cell in the Lagrangian phase is computed using the Phase B cell face
normal velocities:

Vig = Vi + A Z @A) . (102)

i
This approximates the following equation for volume change of volume V moving with the

fluid:

bV _ I u-dA, (103)

which can be derived using the Reynolds transport theorem.3°
The equations of state (10) and (11) are approximated by

R, (104)

yk [ z (pm ka/W

and
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ﬁB’ u' I 5 (1‘05"
Liw = u +(cu)yk =Ty )

where ] 15; isgiven by Eq. (91). aII(LIJk ‘and {cy); ik tsatisfy

it _,\_-:/r,, \B . mb
Ljp= 22 ) LT
m.
and
¢ Tt (106)
(cu)yk (Ym)uk v ( ij)

7. Droplet Equations. The Phase A calculation of droplet positionsis defined by

= x" + AV +8x (107)
P~ “p P P

where 8x'p is a random position change thatis added when timestep At exceeds the par-

ticle turbulence correlation time #;,,; given by Eq. (37) with all quantitiesevaluated at-

time level n:. The displacement §x'p, and an associated velocity change 8v*p, are chosen

from distributions given in Appendix G. The particle then exchanges mass, momentum,
and energy with the gasin the computational cellin-which x,4 islocated.

The Phase -A-calculation of the remaining particle quantitiesis accomplished by
splitting or differencing sequentially the terms associated with each physical effect,
always using the most recently obtained droplet properties when calculating changes due
to the next physical effect. The random velocity changes 8v'p are first added to the parti-
cle velocities v, Then the droplet oscillation and breakup calculation is performed (cf..
Appendix F), followed by the droplet collision calculation (cf. Appendix E). The Phase A
calculation is completed with the updates of particle radii and temperatures due to evap-
oration (cf. Appendix C)and the addition of gravitational acceleration terms to the par-
ticle velocities.

The only particle properties that are altered in Phase B are the particle velocities.
The calculation of v,B is intimately connected with the-evaluation.ofthe terms R';jzand.
S'ijk, and hence is deseribed in Appendix C.

None of the particle properties are altered in Phase C.

F. Solution Procedure for Implicit Phase B Equations

The Phase B values of the flow field variables.are found by selving theimplieit
equations of the previous section. The solution procedure is patterned after the SIMPLE.
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method,!® with individual equations solved using the conjugate residual method.2? In this
section we describe the solution procedure and give the roles of the various subroutines
that are involved.

Basically, the SIMPLE method is a two-step iterative procedure. After selecting a
predicted value of the Phase B pressure pB, in step 1 we freeze the predicted pressure
field and solve for other flow quantities using finite difference equations that difference
the diffusion terms implicitly. In the original SIMPLE method, the convection terms are
also differenced implicitly, and their effects are included in step 1. In KIVA, convection is
calculated in Phase C in a subcycled explicit fashion that offers some significant advan-
tages over implicit methods. In step 2, we freeze the values of the diffusion terms obtained
in step 1 and solve for the corrected pressure field using equations that difference pres-
sure terms implicitly. Sometimes a Poisson equation for the pressure is derived and solved
in step 2. In KIVA, for step 2 we simultaneously solve the cell-face velocity equations, the
volume change equations, and a linearized form of the equation of state. By algebraically
eliminating the volumes and cell-face velocities from these equations in favor of the pres-
sures, one can show we are also solving a Poisson equation for the pressure in step 2. Fol-
lowing step 2, the predicted and corrected pressures are compared. If they agree to
within a specified convergence tolerance, the equations have been solved, and we proceed
to Phase C. If the difference between the pressure fields exceeds the convergence toler-
ance, the corrected pressure field becomes the new predicted pressure field, and we return
to step 1 and repeat the process. Each pass through the two steps will be called an outer
iteration.

In Ref. 54 it is argued that one should be able to stop after a small, predetermined
number N of outer iterations and have a sufficiently accurate solution of the equations.
Such a solution procedure is noniterative and therefore very attractive, but we have found
the argument to be flawed. The argument is based on the fact that each outer iteration in-
creases by one order in Af the accuracy of the computed approximations to the exact solu-
tion of the finite difference equations. By stopping after N outer iterations, one introduces
temporal truncation errors whose formal orders are equal to or greater than other trunca-
tion errors of the difference equations. We have found through computational experience,
however, that it is better to iterate to a prescribed convergence tolerance. Although the
errors incurred by stopping after N iterations may formally be of high order, they can be
unacceptably large in practice.

Because the equations for (Y ,)B, kB, and B are weakly coupled to the flow field solu-
tion, these equations are not included in the outer iteration. The mass fractions (Y ,)B
are used in the calculation of the Phase B pressure pP in Eq. (104), but the values of the
Phase B pressures and velocities do not influence the solution of the (Y ,,)B through
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B (77):. Thus Buy: (7T)4s solved for the (¥,,) % in subroutine YSOLV

E before beginning-
the outer iteration. This resultsin a considerable computational time savings over-
schemes, such as those that calculate implicit convection in step 1, thatinclude the mass
fraction equations in the outer iteration. We often have ten or more chemical species in
our applications, and to solve equationsfor all thesein the outer iteration would greatly-
increase computational times:

In the cases of k¥ and eB, the flow field influences their values through the turbu-
lence production-termsin Eqs: (96) and (97), but the values of k% and ¢B do notenterinto
the flow field equations. Thus Eqs. (96) and (97) are solved after completion of the outer
iteration in subroutine KESOLVE. The finite-difference equations have been designed, of
course; to give this one-way coupling. Mathematically, the valuesof £ and ¢ influence the
flow through the turbulent diffusivity and the turbulent pressure Zpk. This coupling
could be accounted for by using Phase B values of k and ¢ to evaluate the turbulent diffus-
ivity and 3pk; but this would greatly increase computational times, is not'necessary for
stability, and is usually not necessary for accuracy when timesteps are used that satisfy
the constraints of Sec. IIL.H.

Thus the only equations in the outer iteration are the momentum equation; internal-
energy equation, and the pressure equation. We now describe in more detail the outer
iteration. The predicted pressure Pijkp is first initialized by linear extrapolation using the
Phase-Bpressures from the previous two cyeclées:-

n

p- _ (.B-yn—1- ] B-\n=1- B \n—27 (108)°
=( (p> V77 —(p” Y T4 -
p{jk' ‘,p,l.jk)/ + 1 [ pijk) \pijk) 1.

This extrapolation has been found to reduce both the number of outer iterations and the
number of iterations required to solve the pressure equation.

The first equation solved in step 1 is the momentum equation (78). The predicted
pressures p ijkp are used in place of the unknown Phase B pressures, and predicted velacity
field ujjp” is solved for in place of the Phase B velocities. This calculation is performed in_
subroutine-VSOLVE.

The predicted temperature field is next found by using a combination of Eqgs. (95),
(105), (104), and (76). Equation (105) is used to eliminate IB in favor of 7B in (95).
Equations(104) and (76) arecombined to give

M?k [ < (Y}n)?'k | -
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which is then used to eliminate VijkB from (95). After some rearrangement and replace-
ment of superscripts B with superscripts p to denote we are solving for predicted values,
we obtained the following equation for the predicted temperature field:

pr, +

p n
o D.. V. At
mp 11 Uk Uk Uk . n WP e AN
rijk =11 ijk + N B B ¢ S—- Ka v [(bl)rl + 1 - q)l)) P]a Aa
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This equation is solved in subroutine TSOLVE. After solving for the predicted tempera-
tures, the predicted cell volumes V[-J-kp are found from (109) with superscripts p again
replacing the superscripts B:

M2, L P
v = 2 | N B pp (111)
ijk p O | = W ijk -’

pi_]k m m

Finally, we solve for the corrected pressure field Pijkc' This involves simultaneous
solution of Eq. (86) for the cell face vélocities, Eq. (102) for the corrected cell volumes, and
a linearized, isentropic equation of state that relates the corrected pressures and volumes.
In Eq. (86) the corrected pressures are used on the right-hand side of the equation in place
opr. In (102) the corrected volume Vijk ijkB' The equation of state is
obtained by combining (109) and (110), neglecting the diffusion and dissipation terms in
(110), and linearizing about the predicted cell volumes and pressures. The resultis
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The corrected pressures are found in subroutine PSOLVE.
The predicted and corrected pressure fields are then compared to see if convergence
has been attained. Theouteriterationisjudged-to have convergedif

o~
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ok
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M(,x(pe Y+ Min. (pf n ]l
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7 c . ¢ I -10
I‘pljk l_]k < & {ll Max (p'ffnn) — Min. (‘P?mn)!+ I[
Ilmn Imn Imn
for all cells (i, j;&). The convergence tolerance ¢, is typically taken tobe 0.10. If(114)is
not satisfiedinmrevery cell; then the corrected pressure field becomes the new predicted:
pressure field, and we return to step 1..

If convergence has heen-attained, then pijkB is setequalto pijkci u;;, B is found from’

ijk
(78) 'Wit’h’the’most’recentiy predicted velocity field used to evaluate the viscous stresses,
and ;" B is found from (95) with the most recently predicted velocitiesand temperatures
used to evaluate the dissipation and-diffusien-terms. Finally, thePhase-B-vertex positions

are given by

x5, =x" +uf Ar (118}
h Sk Bppst

>is the rezone phase, in which we caleulate theconveetive transport-asseci-
ateiwithmavmg,the mesh relative to the ﬂuld.— This is accomplished in-a subeycled; ex-
plicit-caleulation using a timestep At; thatis anintegral submultiple of the main comp-
utational timestep Ai: The timestep At. must satisfy the Courant condition u, At/Ax <1,
where u; is the fluid-velocity relative to-the grid velocity, but because there isno upper
bound on the number of subeycles, the code canrun-with-u,At/Ax > 1. Theexact formula
for Ai; is given in the next'section. Convective subcycling saves computational time
because the rezone calculation takesonly about ten percent of the time of the Lagrangian-
phasecaleulation:

The user of KIVA-1II hias the option of using one of two convection schemes: quasi-
second-order upwind (QSOU) differencing, described in Appendix M, and partial donor
cell {PDC) differencing; described in Appendix N. In addition, when using PDC differ-
encing, the user can vary the amount of “upwinding” through two parametersuyand §,.
When.a, =1and $, =0, donorcell or full upwind differencing is-used: Whenap =0and
Bo = 1, interpolated-donor cell differencing, or Leith’s method,?% is used. The algorithms
are fully described in the appendices, but here we will demonstrate some of their proper--
ties through a computational example. Because of poor resolution, the example problem
is a severe test of the convection schemes and exaggerates many of their shortcomings.
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In the example we convect a scalar field through a two-dimensional mesh of square
cells with a uniform velocity directed at a 45 degree angle to the mesh directions. The
initial conditions are plotted in Fig. 6. The scalar field is initially unity on a square that
has five cells to a side and is zero otherwise. Also shown in Fig. 6 are the results for five
different convection schemes after one timestep At such that uA#/Ax = 5, where u is one
component of the velocity. The five schemes are subcycled explicit QSOU, donor cell, and
interpolated donor cell, each using uAt./Ax = 0.2, and fully implicit donor cell and the
QUICK scheme, both using uAt/Ax = uAt/Ax = 5. The latter two schemes are not
available in KIVA-II, but are included in the examples in order to illustrate the accuracy

of commonly used implicit schemes. Given in Fig. 6 for each convection scheme are con-
tour plots of the final computed scalar field, the maximum and minimum computed

Initial Condition
Max = 1.0
Min = 0.0

SOoU
ult./Ax = 0.2

Max = 0.87 Min = 0.0

Error = 0.36

Donor Cell

uAt./Ax = 0.2

Max = 0.63 Min = 0.0
Error = 0.53

Interpolated Donor Cell
ult./Ax = 0.2

Max = 141 Min = -0.35
Error = 0.41

Fig. 6.
48

Implicit Donor Cell |

ult./Ax = 5.0
Max = 051 Min = 0.0
Error = 0.83

Max

Implicit QUICK
ult./Ax = 5.0

0.66 Min = —0.05
Error = 0.75

Isopleths from calculations of convection of a square-shaped scalar profile.



values, and the root-mean-square error between the computed solution and the exact solu-
tion; which is just-a-uniform translation five cells in each direction. The error is averaged:
over the twenty-five cells where the scalar field is unity in the exact solution.

Themost accurate methodis QSOU, eventhough it has first-order spatial’
truncation errors and therefore is formally less accurate than interpolated donor cell,
which.is second-order accurate in space. The least-accurate methods are the implicit-
methods. This illustrates the fact that although the implicit methods are unconditionally
stable, they can have large errors when uAt/Ax > 1.

A monotone scheme has the property that it introduces no new mimima or maxima
in the computed solution. The donor cell and QSOU schemes are monotone, and thus their
computed maxima-and minimalie between those of the initial conditions: Interpolated-
donor cell and QUICK are not monotone.. Computational oscillations in regions of steep-
gradients are obtained with nonmonotone schemes and can be especiaily pronounced in
calculations using pure interpolated donor cell.

Although PDC differencing is less accurate than QSOU, we retain it as an option in
KIVA-TI becauseitissignificantly faster than the QSOU scheme. We recommend use of
PDC differencingin calculations in which speed is more important than accuracy or in
calculations in which cell Reynolds numbers are less than two. In the latter case physical
diffusion is large enough to render negligible the numerical errors associated with PDC
differencing. When using PDC differencing, we recommend taking B, = 1.0 anda, = 0.1
or 0.2 to suppress computational oscillations. The QSOU schieme should be used to obtain
the most accurate calculation for a given mesh resolution. Both schemes can be used in
separate calculations of the same problem, asa partial test of convergence. Ifthe com- -
puted solutionsare the same, then numerical errors associated with convection are small.

‘We now describe the convection calculation in mere-detail: The transport of cell-
centered quantitiesis-computed by using a volume §V, thatis swept out by regularcell
face a each convective subcycle, as it moves from its Lagrangian position (defined by the
corner positions,xijkp),to,itsﬁnal,pasition (defined by the user-specified 'x’ijkn 1), Itis
convenient o associate §V, with both the face and the regularcell underconsideration, so-
that 8V, is positive if the volume of thecell in-question isincreased by moving face a from
its Lagrangian to its final position. Thus, for a given face, the sign of 8V, depends on the
side-ofthe face from which it is viewed:. Thisconventionisentirely analogous to that
adopted in subsection B above for the area vectors A,. The 8V, are evaluated.in terms of
the cell-face velocities and the old- and new-time grid positions:
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In (116), 8V,C is the volume swept out by cell face a when the four vertices defining the
face are moved from their old-time positions x;jz" to their new-time positions xjjpn+1. The
8§V, which are computed using Eqs. (56) and (57), are positive if the volume of cell (i, j,k)
is increased by the grid motion. It can be verified using Eq. (102) that the §V satisfy

B S _ +1
Ve, T NS > 8V, =Virh, (117)

a

where NS = At/At. is the number of convective subcycles.
The species densities (p,,) ijkv after v convective subcycles are given by

v _ —1y0-1 —1
(pm)ijkVZik = (pm)li)jk ijk + Z@m)ﬁ 8V, (118)
a

where the summation is over the faces of cell (i, j,k). The species densities are initialized
at the beginning of Phase C by their Phase B values

— B ' 119
(pm)(i)jk - (pm)tjk ’ ( )

and the subcycle volumes Vijkv are given by
_ n+1 B 120
Ve, = Virt+ (NS — VNS, (120)

where NS is the number of convective subcycles and Vijkn+ 1is the cell volume based on
the final coordinates. The cell face densities (p,,) " are evaluated either by the quasi-

second-order upwind scheme described in Appendix M or by the partial donor cell proce-
dure described in Appendix N. The total density after v convective subcycles is given by

Py = Z(pm)zk , (121)
m

and the vertex masses after v subcycles are found from Egs. (66) and (67) using these total
densities of (121) and the volumes of Eq. (120).

The specific internal energy I ijkv after v convective subeycles is determined from

v v _ uv=1lgu—10-1 N v—1
Pk Vijk[li;k =Pr Vi Ly + 2D 8V, (122)
a
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where the cell face energy densities (p]) ,” are evaluated either by quasi-second-order-
upwind-differencing (Appendix M) or by partial donor ceil differencing (Appendix N).
The formula for updating turbulence quantity q ijk'u in the subeyeleis

PVl = Pl Vi 1 + 2 0078V, (123)
a

where g = korq = k% 2/e = L. We convect turbulence length scale L rather than ¢ be-
causec generally has steeper gradients; %ﬁi“i‘é%!ﬁ% largernumericalerrorsarise when:
convecting e The cell face quantities (pg),” are evaluated either by quasi-second-order
differencing (Appendix M) or by partial donor cell differencing (Appendix N) using the full.
donor cell Iimit (a, = 1, B, = 0). Since partial donor cell differencing is not monotone
except-when a, = l'and f, = 0, this limitis used toensure that negative valuesof k and L
arenotobtainedin the convection phase.

After completion of all convective subcycles, the final values of cell-centered quanti-
ties are set equal to theirvalues after the NS subcycles. The final value of temperature is
computed by inverting Eq. (11) using final values of internal energy and mass-densities.
The final pressure is given by

n+i’ mn+1 n+1 (124)
pijk o'pyk 2-( muk /W m.’ L

Convective transport of momentum on subcycle v is calculated in terms of the mass
increments across momentum cell faces; which are related to the mass increments across:
regular cell faces in the following way. The mass increment across cell face a of a particu-
lar momentum cell is defined by

1.
ES

7 N b so0—1ax ~1 arr.s. (19K
@) = < (718, 0)7T6Y)., (125)
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where 0 and i are the regular cell faces on either side of the momentum cell face a-
(between which face a is “sandwiched”), of which i ("inner”) is the one that actually cuts
into the momentum cell inquestion, while face o (“outer”) does not. As usual, it'is conven-
ient to-associate SM', with both the face and the momentum cellin question. When face a.
is viewed from the other momentum cell to which it is common, o and i are interchanged
and the sign of 8M', reverses. One readily verifies that Eq. (125) is consistent with the
definition of vertex masses, in the sense that



M, =M+ > M) (126)
a
where the summation extends over all faces of momentum cell (i, j,&).

Before fluxing momentum the mass increments 8M', corresponding to the twenty-
four faces of momentum cell (i, j,k) are added in groups to obtain mass fluxes 8Mg® through
six composite faces § of the momentum cell. Each composite face is formed from the four
cell faces a that touch a common regular cell edge that emanates from vertex (i, j,k). The
momentum fluxing is then computed by

M7 ul = (M’)Zf,;luz.;l + BZ @MY°~tug! (127)
where the velocities ug’~ ! are evaluated by the quasi-second-order upwind scheme of
Appendix M or the partial donor cell scheme of Appendix N.

Two special features are provided in conjunction with the convection calculation.
The use of partial donor cell differencing sometimes results in the development of unphys-
ical small negative species densities. We therefore provide a reapportionment algorithm
which tends to preserve the positivity of these densities, as deseribed in Appendix O. This
algorithm is not needed when quasi-second-order differencing is used, since this scheme is
monotone.

In an axisymmetric swirling flow with free-slip boundary conditions, the total angu-
lar momentum should be conserved. However, the KIVA difference approximations to the
momentum equations simply conserve the three Cartesian components of momentum,
and this does not imply angular momentum conservation because of truncation errors. In
practice, we have found that the only such truncation errors that are significant are those
arising from the rezone calculation of Phase C. For this reason, an optional angular mo-
mentum correction procedure has been included in Phase C, as described in Appendix P.

H. Accuracy Conditions and Automatic Timestep Control

The timesteps At and At are selected automatically at the beginning of each cycle.
Because diffusion terms are differenced implicitly and convective terms are subcycled,
there are no stability restrictions on A¢, but there are several accuracy conditions upon
which the automatic selection of At is based. These will be given in this section. The con-
vection timestep At. must satisfy the Courant condition for stability, and we also describe
how this is generalized to an arbitrary mesh.

The accuracy conditions we use to determine A¢ cannot give a universally reliable
selection because there are many accuracy conditions we have not taken into account. It
has been our experience, however, that the criteria we use for determining At give tempo-
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rally-zecurate-solutionsinmost-caleulations: The useriscautioned thatother accuracy
conditions could be important in his application and the timestep should always be varied.
to test for temporal accuracy.

The first aceuracy eondition-on Atisthat

—— AT < f Ax (1 .
| Dul 2 pa (128)

where f;is some positive real number of order unity and Ax-is an-average cell dimension.
This condition arises because terms of order higher than At are ignored in Eq. (115). The:
accuracy constraint (128) is the only one we use in which the cellrsw&Axrappears. We note-

1 - . . -
that At~ Ax3 for condition (128), in contrast to-explicit convectivestability criteria, which

give At ~ Ax, and explicit diffusional stability criteria, which give At ~ Axfz{ Thus while (128)

will reduce the timestep as the mesh is refined, it will not do so as much as the two stabili-

ty criteria, which had to be observed by the first version of KIVA.! Constraint (128) is

implemented by calculating a timestep Atgee:

n+1 fGA i & e
A" U= omine - (129)
ace ooy juB — u?
\i,j,'k) a1y ijk!
where
— Tl ‘2 e, w12 - 2,1 12 2 2 B (12
Axp = I = x " ey — g g — o g — x T s~ x T g~ x [ 1t (130)

and the subscriptsin (139) refer-to the vertices of cell (i; j,k) as numberedin-Fig. 2. We-
then constrain At" ! ta be less than At,..**1, as described below. The default value of £,
is 0.5.

The second accuracy condition on At is that
IMAL<f . (131)

where fis of order unity and A is an eigenvalue of the rate of strain tensor. This criteri-
onlimits the amountof cell distortion that can occur due to mesh movement in the
Lagrangian phase. When cells become very distorted, the spatial accuraey of thediffer-
ence approximations-suffers. One example of how (131) worksisthefollowing. In a plane
parallel shear flow, thereis one nonzero eigenvalue { du/dy, where u is the streamwise ve-
locity component and y is the cross-stream direction. Asdepicted in Fig. 7 for a rectangu-
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lar cell aligned with the flow, constraint (131) limits the distance upper and lower cell
vertices can move relative to one another, divided by the cell height. Constraint (131) is
enforced by calculating a timestep At g

A" = min —L— (132)
rst G, k) 2\/aijk/3
where
2 133
@ = 4P, —3q,,) (133)

and pjjr and gjjr are given in terms of the rate of strain tensor s¢p, in cell (i, j,k):

Pijk = ~5ee (134)

quk = Blems2€s3m + Z:6’2msl€s3m + 8CrrLIislé’szm :

In (134) e¢/np is the alternating tensor,%” and s¢,, is given by

du du
. :1<__f+ ) , (135)
2 axm axe ijk

where the velocity derivatives are evaluated using time level n velocities and the approxi-
mations of Appendix K. It can be verified from the formula for the roots of a cubic polyno-
mial that the denominator of (132) is greater than the magnitudes of all eigenvalues of
s¢m, and therefore if we select At" < At,4" the constraint (131) will be satisfied. Using
fr= 1/V/3 has given sufficient accuracy in calculations we have made.

Two other accuracy criteria for At are obtained from the need to couple accurately
the flow field and source terms due to chemical heat release and mass and energy ex-
change with the spray. For the chemical heat release, the requirement is that
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Ve . (136)-

ik ik

where fep is an input constant typically taken to be 0.1. Constraint (136) is the require-
ment that the total heat release from all chemical reactions in a cell should not exceed a
small fraction f¢p of the total internal energy in the cell. To enforce (136) we calculate
timestep Atcp by

V Q ,

ijk ijk (197).

Ag:':"l =_ min- Chi{___*l_.__‘ltl \101}'
ijk. M I
¢ ijk" ijk

and choose At 1 < At 1, This formula assumes that the fractional rate of energy
release varies slowly from cycle to cycle. Spray timestep Atsp is calculated from a similar
formula:

L 28\ - 19208 sr;
At"+1 = min !f /I ® )ijk f ,[,Vr )Uk ”
sp . | n |7 7eh7] nomo ||
Lk Pij ik ik

3 g1

T'he main timestep used for cycle n+1is then given by

; As- P N {19 -
AP = min (AT AT A AT A A . (138)
ch sp_ gr mx mxca’

The timestep Atgrn+ ! limits the amount by which the timestep can grow:
Al =1.02 A" (139)-
&r

Timesteps Aty and Atpycq are, respectively, an input maximum timestep and a maxi-
mum timestep based on an input maximum crank angle in engine calculations.

Theinitial guess for Atoncycle 0is given by input quantity DTI. This is then com-
pared with Atys°, Atimy, and Atpyeq to determine the actual initial timestep Az, (If the
DTIsuppliedon a subsequent restart differs from the DTT at cycle 0, the current At will be.
reset to this new DTL.)

The convection timestep At is based-onrthe Courant stability condition. In a rectan-
gular mesh, this condition is

M s min( 2 BY_ 82 ) (140)
\jg=b6]"o—b" jw—-0bj/"
xl y z



where by, by, and b, are the components of the grid velocity b. Constraint (140) limits the
magnitude of the flux volume in any coordinate direction to a value less than the cell vol-
ume. To generalize this to an arbitrary mesh, it is natural to replace (140) by the similar
criterion

V..
A" < AP min L (141)
c [4 ISV I

a a

where the §V, are the flux volumes calculated for cell (i, j,k) using timestep A¢."~ 1 In
practice, for accuracy we also reduce the timestep determined from (141) by a factor feon,
typically taken to be 0.2.

IV. THE COMPUTER PROGRAM

A. General Structure

The KIVA-II computer program consists of a set of subroutines controlled by a short
main program. The general structure is illustrated in Fig. 8, showing a top-to-bottom flow
encompassing the entire calculation. Beside each box in the flow diagram appears the
name(s) of the primary subroutines(s) responsible for the associated task. In addition to
the primary subroutines, Fig. 8 also identifies a number of supporting subroutines that
perform tasks for the primaries. Comments at the beginning of each subroutine in the
listing describe its purpose, where it is called from, and what subroutines or functions it
calls, if any.

KIVA-Iis an advanced experimental computer program, not a “black box” produc-
tion code. Its use requires some knowledge of and experience with numerical fluid dynam-
ics, chemistry, and spray modeling.

KIVA-II was written specifically for use on the CRI Cray family of computers, oper-
ating under the Cray Time Sharing System (CTSS) and using the Cray FORTRAN (CFT)
and CFT77 compilers. We have several observations concerning our experience with the
CFT compilers currently available to us:

° CFT 1.11 is the compiler of choice for short runs and scoping studies using KIVA-II.
It will compile the program in about 20 s on a Cray X-MP, and the compiled code will
run the baseline sample calculation in about 63 s.

° CFT 1.14 requires about 55 s to compile KIVA-II. The baseline calculation still re-
quires 63 s to run. A principal feature of CFT 1.14 is vectorization of loops contain-
ing indirect addressing, utilizing hardware features of the Cray X-MP. While thisis
quite attractive for some of our codes, it is of minor consequence in KIVA-II, which
contains very little indirect addressing.

56



o  CFT77, writterrin'Pascal rather than machine language, requires over 3 min to com-

pile KIVA-TI and is best reserved for longer runs in which one can recover thecom--
pilation timepenalty. The baseline run time is downto about 52 s, 21% faster than
with the CFT compilers. Clearly, itis advisable to create a library of relocatable bi-
naries when using CFT 1.14.and CET77, to minimize the time spent inthe compiler.

At present, CFT77 is not a good compiler to use for debugging, as many variables
reside in registers. Therefore, symbdlic,name&arg,frcglently,inaccessible to the debugger.
We understand that the CET77 developers plan to back off somewhat in register utiliza-
tion, so that future versions will be more compatible with interactive debuggers. As
things now stand, developersof large codes are reluctant to use CFT77 because of this.

Most Cray users outside the Los Alamos-Livermore environment have available the
Cray Operating System (COS) and will find KIVA-II generally compatible. The principle
incompatibility with outside Cray systems lies in the calls that communicate with the
operatingsystem: Thefunections of all calls to systemroutines are described in the
EPILOG at the end of the FORTRAN listing. WRITE (59,-) statements refer to the user’s
remote terminal.

Users who do not have a Cray computer face an additional task adapting KIVA-II to
run on whatever computer they have. This is because KIVA-II contains statements pecul-
iar to the CFT compilers that permit vectorization of many of the loops in the hydro sub-
routines. OQureffortsatvectorization resulted in making the hydro portion of the code run
nearly five times as fast. (Unfortunately, the chemistry and spray subroutines are not
amenable to such treatment; this is because each cell in the chemistry and each droplet in
the spray follows a unique logic path dependent upon local conditions.).

The unfamiliar statements in KIVA-IT are the CFT vector merge functions CVMGT,
CVMGP, CVMGM, and CVMGZ, and the vectorization directive CDIR$ IVDEP. The
vector merge functions allow many loops to vectorize, in that they can replace IF tests,
which do not vectorize. Briefly; thefour vector merge functions perform as follows:"

e CVMGT(X,Y,L)resultsin XifListrue, Yif L isnottrue:
CVMGP{X,Y,P) results in X if P > 0, Yif P <0,
CVMGM (X,Y,M) resultsin X if M < 0, YifM > 0.

CVMGZ(X,Y,Z) results in X if Z is zero, Y-if Z is nonzero.

® e

CDIR$ IVDEP instructs CFT toignore apparent vector dependencies or recursions.
Ifan imagined recursion causes the loop not-tobe automatically veetorized by CFT, the-
IVDEP directive instructs the compiler to create vector code anyway:. Note that this
directive begins in column 1, which will cause it simply to be treated as a comment by
other compilers.
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Fig. 8. General flow diagram for the KIVA-II program.
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Fig: 8. continued
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The non-Cray user can quickly modify the program by installing functions that emu-
late the vector merges. For example, CVMGT can be emulated by

FUNCTION CVMGT (X,Y,L)

LOGICALL

IF (L) THEN

CVMGT =X
RETURN
ELSE
CVMGT =Y
RETURN

ENDIF

END

Once the program is running properly, the functions should be replaced by in-line
coding for greater efficiency.

Overall subroutine architecture also shows the effects of vectorization. For example,
the user may ask why we break some logical task into a set of contiguous separate DO
loops, when a single DO loop would appear to suffice. The reason is that excessively long
DO loops will not vectorize because of optimization-block size limitations in some CFT
compilers predating CFT77. Itisnot easy to define just how long “too long” is, as it depends
not on the number of statements, but rather on the extent of computations involved.

These cases were determined empirically; if there was no other reason why a long loop
failed to vectorize, we broke it up and achieved vectorization.

The dimensions in the release version allow up to 12 species, 966 vertices, and 2000
computational spray particles. These dimensions may easily be altered via the
PARAMETER statement (lines COMD.18 - COMD.19).

The input quantities always required to set up a problem are described in the
EPILOG at the end of the listing and are read according to the formats appearing in sub-
routine RINPUT. The mesh generation is automated for a broad range of engine geome-
tries, and is discussed in Sec. IV .E.

B. The Computing Mesh

The KIVA-TI formulation is based on (x,y,z) Cartesian geometry and is applicable to
cylindrical (CYL = 1.0) or planar (CYL = 0.0) calculations in either two or three space di-
mensions. The mesh is composed of a block of cells in logic space, NX cellsin the i-direction,
by NY cells in the j-direction, by NZ cells in the k-direction.

1. The Five Mesh Types Available. Figure 9 shows the five mesh types availa-
ble, determined by the specification of NY, CYL, JSECTR, and THSECT in the input data.

i
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The 2-D cylindrical option (NY =1, CYL = 1.0, JSECTR = 1) offers an efficient
means of calculating fully symmetric cylindrical geometries. In three dimensions, the cy-
lindrical case results in a pseudo-polar grid. IFNY > 1 and JSECTR = 1, the resulting
mesh is some sector of a full circle. Figure 10 illustrates a 72° sector, which has been ap-
plied to an engine geometry in which the on-axis fuel injector has 5 evenly-spaced nozzles,
directed radially. The sector option allows us to model the 5-nozzle feature easily and far
more efficiently than zoning a full 360° by taking advantage of the symmetry. The
JSECTR =0 option is used when features of the geometry or spray require zoning the full
360°. Asshown in Fig. 11, the Cartesian block of cells is curved around and joined to itself.

In all three cylindrical cases, the front and back (derriere) boundaries are periodic.
The neighboring-cell relationships between cells facing the front and derriere boundaries
are built into KIVA-II, and velocities are mass-averaged across corresponding points.

The left boundary is shrunk to zero size to become the central axis, where our prescription
at each axial level is to separately mass average each velocity component. For engine
applications, the top boundary becomes the cylinder head, which may be flat or domed,

and the bottom boundary is the moving piston face, which may be flat or contain a bowl for
DISC or diesel designs.

‘ = ; ‘ &
J | o

> L TT—PERIODIC
Fig.10. Perspective view of the outline Fig.11. The KIVA-TI 3-D pseudo-polar
of a KIVA-II sector mesh. grid is formed from a Cartesian
NX = 20,NY = 5,NZ = 10, block of cells through the use of
and THSECT = 72°, periodic boundary conditions.

62



The azimuthal dimension of the cylindrieal optionsis given by THSECT, measured-
indegrees. THSECT isrequired to be 360° for the full-circie mesh, or an even fraction of -
360° for a sector mesh, so that the symmetry condition is satisfied. For example, the mesh
inPig. 10 has THSECT = 72°, as there are 5 spray nozzles being modeled: When NY =1,
subroutine RINPUT ensures that THSECT = 0.50°.

For whichever of the five mesh configurationsthat the user seleets; KIVA-IT'auto-
matically computes the correet-boundary condition-treatmentsforuno-slip; free-slip, or
free-slip law-of-the-wall, requiring no code modifications by the user, except for special.
cases such as inflow.and outflow-treatments; which are discussed in-See. IV K.

2.  2-Dto3-D Conversion. Further efficiency in the use of 3-D sector and full
circle meshes is made possible through the use of a 2-D to 3-D converter supplied in KIVA--

H: Inmanyengineapplications; a-significant portion of the calculation is the cold flow-
after IVC and before the spray event, while the flow is truly axisymmetrie. This portion
can be modeled using the 2-D cylindrical option (NY = 1), then forcing a restart dump just-
before the spray begins. The user then restarts fromthisdump, supplying a new value of:
NY-andan appropriate value of THSECT in the input data. Subroutine RINPUT notes
that NY has changed and calls subroutine TRAN3D to convert the 2-D mesh with its cur-
rent-solutiontoa3-D sector or full circle mesh with the same current solution. The 3-D°
run then proceeds just as if it had been 3-D all along, and the user can initiate a nonaxi-
symmetric spray-event, having realized a-significant reduction in computer time to reach
this pointin the calculation: Theonerestrictionon thisfeature is thatthe parameter NV,
which is the dimension of a cell storage array, must be adequate from time t = 0 to accom-
modate the 3-Dmesh..

C. TheIndexing Notation

Asdiscussed in Seec. II1.B, some variables are located at vertices and some at cell
centers. In FORTRAN notation x;j; becomes X(I,J,K), p;jz becomes P(I,J,K), and so on.
Thus, theindices (I,J,K) refer to the cell center for cell-centered-variablesor tovertex

(i, j;k) for vertex quantities.

Because the number of vertices in any direction is one greater than the number of
cells, itis-apparent that-the grid incomputerstorage mustbe{NX+ 1) by (NY +1) by
(NZ+1) insize. Since ourindex (I, J,K) refers to both cell centers and vertices, we must..
allow extra storage planes across the right, back, and top of the logical mesh:

In KIVA-II we replace the triple (I,J,K) subscript by a single subscript, which allows -
statements to be compactly written. Traditionally single subscripts have also been more.
efficient, but this is becoming less-of an-advantage with theincressing sophistication of
the newer compilers. When referencing the eight vertices of a cell, we use the 1 through 8

Ve 4

shorthand notion of Fig. 2. In this notation; “14” refers to vertex 4; the(1,5,K) veriex: 14'is
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computed as (K—1)*NXPNYP + (J -1)*NXP+I, where NXPNYP = (NX + 1)¥(NY +1) =
the number of vertices in a plane and NXP = (NX + 1) = the number of radial vertices.
When referencing the six neighboring cells to obtain cell-centered variables, we use sub-
scripts with the letter P for + and M for —, when necessary. Thus, we write

IMJK for (i—1,jk),

11 for (i+1,j,k),

IJMK for (i,j—1,k),

13 for (i,j+1,k),

IJKM for (i,j,k—1),and

18 for (i,j,k+1).

In vector loops that update the 8 vertices of a cell, such as for pressure accelerations
or the calculation of vertex masses, note that the sequence is always 6-7-5-8-2-3-1-4. This
isdictated by the rule that senior array elements must appear before junior array elements
in order to avoid vector dependencies of the results-not-ready or value-destroyed types.

D. StorageofCell Data

For many applications, KIVA-II can make heavy demands on computer storage.

Even with minimal cell resolution, three-dimensional calculations require several
thousand cells, and the multiple species and spray model capabilities add to the demand.
Because we operate today in a time-sharing environment, reasonably efficient use of com-
puter storage becomes imperative. Accordingly, we have equivalenced as many storage
arrays as possible in KIVA-II. The idea is to retain quantities during a calculational cycle
only as long as they are needed, and then to reassign the available storage to other quanti-
ties. In this version of KIVA-II, the full calculational cycle requires 217 variables of sub-
script (£, 7,k), plus species densities (12 arrays) and species masses (another 12 arrays). As
part of the equivalencing, the species densities and species masses share the same storage.
The final storage scheme requires 100 arrays rather than 241, a 59% reduction. Figure 12
shows the allocation of these 100 arrays. The ordering from left to right corresponds to the
sequence in which subroutines are called during a cycle. Reading down a particular
column, the appearance of a variable name signifies reference to it in the associated
subroutine.

E. Mesh Generation
Although the features in KIVA-II provide a general capability, applications to inter-

nal combustion engine modeling were the principal reason for writing the program. With
this in mind, we have included an automated mesh generator in subroutine SETUP that
will create a usable 2-D or 3-D cylindrical grid for a wide variety of piston and head shapes
for both DISC and diesel engines. The generator requires the use of tabular information

as part of the input data.
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1. ThePiston Face. Given the dimensions of the desired piston geometry, the user

lays out a half cross section on graph paper, as shown in Fig. 13. At this point, one must
decide on the level of resolution available and, based on it, define grid points along the
piston silhouette, starting at the bowl axis and ending at the cylinder wall. The outline is
required to follow cell edges in the logical mesh and not cut diagonally across a cell. With
these points defined, it is a simple matter to create the input table. For each point, the
generator requires the logical coordinates (i and k) and the physical coordinates (r and z)
in cm, relative to z = 0 being the lowest z-coordinate. In the input data, NPO is the num-
ber of points, and the coordinates are in the arrays IPO, KPO, RPO, and ZPO. In addition,
NUNIF specifies how many zones out from the centerline are to remain uniform in r from
the bottom of the mesh to the top (NUNIF > 0). This feature allows one to maintain the
best possible resolution in the spray region. Figure 14 lists the tabular information asso-
ciated with Fig. 13. The mesh generator first assigns the vertices that have been specified
in the table, then placesremaining vertices, those within the fluid region, at average posi-
tions of their neighbors. The averaging in the code uses equal-weight springs. If thisis
found to create a less-than-optimum grid, it is a simple matter to modify the algorithm to
use unequal-weight springs to shrink or expand cells selectively in the piston bowl.

z (cm)

r (cm)

Fig.13. Chamfered bowl piston silhouette showing grid points to be used by the auto-
matic mesh generator.

68



NPO - - =22
NUNIF. Q.
0.0
.28125
5625
.84375
. 1285
.35

.60
.82
.975

15

.25
25
.28
1437

. 625
L8125

L

[
oXeYo¥e¥e!

Fig-14. Tabularinputdata corresponding
to Fig. 13.

MO AW
C Ul o

PPOR e a2 2000

v

M+ ORWOLND 200

o

QO WW W OWWPE LM U B WK —
NBN - 200000000000

) 01 )
Yl

Lommmmwg

L4875
.975
L4625
. 708625

8215 -

. s

PWRLOWL
EBWWWNNM

J‘b

IO(DUP(OLOLOW\‘\lq)‘Ulbwlg\_A.j.-..‘.;_._;_._.:_._.

PO
WWwwwK

Note that up to this point, we have been discussing the geometry in a purely two-
dimensional sense. In fact, KIVA-IT initially sets up only the j = 1 azimuthal plane;
treating the mesh generation astwo-dimensional: Then, for cylindrical meshes, the gen=
eratorsimply rotates thisj =1 configuration about the axis to create the remaining
azimuthal planes, j = 2throughj = NYP. Figure 15shows the axisymmetric mesh that
results after rotation through 360°. Deactivated vertices lying entirely within the piston
are not drawn. For a 2-D geometry with cylindrical symmetry, only the j = 2 plane is
created by the rotation proeess.

Some piston designs have an offset bowlin the piston face, not concentric with the
axis of the cylinder. This is common in diesel engines and represents a truly three-
dimensional geometry. Subroutine SETUP autoematically allows this option, through the
use-of the quantity OFFSET in theinputdata. IFOFFSET = 0.0; the resultis an axisym-
metric geometry, asin the example justdiscussed. IfOFFSET = 0.0, however, the bowl is-
offset in the x-direction by the distance specified by the value of OFFSET.

An example is shown in Fig. 16a, which shows a bow! offset —0.546 cm from the cy-
linder midline. To set up this geometry, the user starts by pretending it is an axisymme-
tric configuration, asin Fig. 16b, and supplies the tabularinpnt data hased.on these ad-
justed dimensions. The axisymmetric layoutis shown in Fig, 17, and the associated data
are listedin.-Fig. 18. SETUP first-creates a gridin-the same mannerasinthe previous
example; then checks the value of OFFSET. Because OFFSET = — 0.546, the bowland
all vertices above it are displaced to the left (negative x-direction) by this amount. The
radiallines are then straightened from the new center out to thecylinder wall. Next, x-
and y-coordinates between the bow! lip and the cylinder wall are uniformly distributed.
Figure 19 shows three views of the final mesh SETUP creates..

69



AV 117/
AL 1//7
[T T}

X >
g

70

Fig. 15.

The KIVA-II computing mesh
created using the tabular data of
Fig. 14. The top view is a cross
section through the mesh; at the
bottom is a perspective view of the
grid, in which the fluid region is
outlined. NX = 13, NY = 16, and
NZ = 16.

A piston cup with a bowl
offset 0.546 cm to the left.
The user pretends that the
desired configuration is axi-
symmetric and supplies the
offset as a separate
parameter.
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Fig.19. Perspective, overhead, and cross-sectional views of the KIVA-II computing
mesh created from the tabular data of Fig. 15, with the bowl subsequently
offset. The mesh dimensions are NX = 20, NY = 24, and NZ = 20.

In the previous examples, the piston cups have been round, as are indeed most cup
designs in common use. Some designs, however, employ a square cup, the purpose being
to enhance turbulent mixing. A square cup option isincluded in the KIVA-II mesh gener-
ator and requires a 90° sector geometry (JSECTR = 1,CYL = 1.0, THSECT = 90.0, and
OFFSET = 0.0). The example shown in Fig. 20 has NX = 13, NY = 12, and NZ = 20. It
was created using the input data listed in Fig. 21, which shows three additional variables:

® SQUARE = 1.0 indicates the square cup; SQUARE = 0.0 for the round cups of
the previous examples.

® RCORNR s the radius of the corner in cm; at present we require RCORNR > 0.

® NSTRT is the number of zones with straight sides before the corner radius
begins. A relationship between NY and NSTRT is implied, and the code checks to ensure
that NY — (2*NSTRT) > 1.

The mesh generator has been successfully applied to a wide variety of bowl designs.
In addition to the chamfered, Mexican-hat, and square bowls of the above examples, we
have modeled deep curved and reentrant bowls. The bowl volume is printed by SETUP as
a check for the user, along with the total mesh volume.

At the other extreme, a flat-topped piston is obtained by defining KPO = 1 and
ZPO = 0.0 for all tabular points. For a fixed Eulerian grid, input ATDC = —180°,
SQUISH = 0.0, and STROKE equal to the desired mesh height. (The result is the same
with ATDC = 0°, STROKE = 0.0, and SQUISH equal to the mesh height.) Unless
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Fig.20. Overhead, front, and perspective

AR RSN viewsof asgquare-cup mesh. The
§ i > ' mesh dimensions are NX = 13,
T T N T - AIXY . 24y I hTer-

NY =12, and NZ = 26.
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modified by the user, the generator will create uniform 8z’s. The result is a simple cylin-
der, which is also useful for other purposes besides engine applications. The piston motion
may be turned off to maintain the fixed grid simply by setting RPM = 0.0 in the input
data. This will also automatically turn off the swirl, because the swirl ratio is defined as
the ratio of air r.p.m. to crankshaft r.p.m. If a swirl is desired in an RPM = 0.0 case, the
user will have to patch the ANGVEL statement in subroutine SETUP. A nonzero value of
OFFSET can be used with a flat-topped piston if one wishes to place the axis of rotation to
one side of the axis of the cylinder. Thus, all planes would have an appearance similar to
that illustrated in the overhead view of Fig. 19.

The simple plane coordinates (CYL = 0.0) meshes shown in Fig. 9 are also created
automatically. In 2-D, thej = 2 plane isidentical to the j = 1 plane, butis at depth §y (DY
in the input data) behind the j = 1 (y = 0.0) plane. In 3-D, the j planes behind thej =1
plane have uniform §y (DY in the input data). This may be easily overridden if nonuni-
form 8y’s are desired.

2. TheCylinder Head. Analogous to the definition of a piston silhouette, the
generator uses tabular input data when the cylinder head is not perfectly flat. In the in-
put data, NHO is the number of points in the head outline data, again starting at the axis
and ending at the cylinder wall. The limiting case is, of course, the flat head, as in the pre-
vious examples. Here the use specifies NHO = 0, with no further mesh generation data
required after the NHO line.

For a nonflat head, NHO > 0, and the coordinates are in the arrays THO, KHO,
RHO, and ZHO. ZHO isrelative to a value of zero at the lowest point. The head shape,
typically a dome, may be cylindrically symmetric, ellipsoidal, or semi-ellipsoidal when
viewed from above. In addition, the dome may be offset, again using OFFSET in the input
data. If NHO > 0, the head is offset rather than the piston bowl, if a bowl exists.

An example that uses all of these features is the mesh shown in Fig. 22, Let us
examine the sequence of stepsin its creation. First, the piston silhouette is defined, as

discussed in the previous section. Thisis a simple cylindrically symmetric shape with a
slightly arched top, as illustrated in the bottom of Fig. 23. The first set of 11 tabular lines
in Fig. 24 provide the definition. If we were done, the mesh would appear as shown in

Fig. 25a. Second, the basic head shape supplied to the code neglects for the moment offset
and ellipsoidal adjustments. This starting profile, drawn at the top of Fig. 23, and entered
as the set of 17 lines following NHO in Fig. 24, modifies the mesh to the appearance shown
in Fig. 25b. Third, the head is offset 1.20 cm to the left, specified by OFFSET = —1.20 in
the input file (Fig. 25¢). Finally, the head dome is made semi-ellipsoidal. Whenever
NHO > 0, NEO must be specified. If NEO = 0, no tabular data follow, and the head defi-
nition would be complete. Otherwise, NEO is the number of ellipsoidal or semi-ellipsoidal
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k-planes in the dome. The four columns of tabular information that follow NEO are the
arrays NCORR, IEMAX, SEMIMJ, and SEMIMN. NCORR is the index of the correspond--
ing line in the NHO table. For a perfect ellipse both left and right; the value of IEMAX is
zero, using the semi-major (SEMINJ) and semi-minor (SEMIMN) axes specified at that
level. Points along the ellipse are determined by their intersection with each radial grid.
line in turn, which originate at the ellipse center. IFIEMAX = 1, asin this example, the
code again creates a perfect ellipse on the left, but on the right chooses the shorter of the
ellipse distance and a circular arc whose radiusisthe RHO at that k-level. Thisensures
that the ellipsoid on the left will smoothly join the circular arc on the right, as evident in
the overhead viewof Fig. 22. The final mesh is also shown inthe cross-section of Fig. 25d.

Fig. 22. Perspective views of a KIVA-II mesh with a domed head. An overhead view is.
shown atthe lowerleft, and-a-cut with planesj =11 throughj = 16 removed at
the lower right. The mesh dimensions are NX = 10, NY = 16,and NZ = 16..
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Fig. 23. Grid points used by the mesh generator for the mesh of Fig. 22.

F. Cell and Vertex Flags

In many engine applications, of which the examplesin the preceding section are
typical, a number of cells are deactivated, as they lie entirely within the piston or the
head. In order that calculational DO loops may easily recognize such “obstacle” cells, in
addition to the “ghost” cellsin thei = NXP,j = NYP,and k = NZP planes, we use a cell
flagging scheme. Cells with F = 0.0 are deactivated, whereas cells with F = 1.0 partici-
pate as fluid cells. In a vectorized DO loop over all cells (e.g., DO 1014 = 1, IJKVEC),
F(14) is used as a coefficient, thus permitting vectorization, as no testing is required.

SETUP also defines a set of vertex flags FV. Analogous to the cell flags, FV = 0.0
describes a vertex lying entirely within an obstacle, and FV > 0.0 describes a fluid vertex.
Used in the automatic mesh generator and retained for use thereafter are unique flags for
each of the following possible cases:

FV = FLFACE = 1.0 for all vertices on the piston face,

FV = FLBOWL = 2.0 for bowl vertices not on the piston face,
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Fig. 24. Tabular input data for the mesh of Fig. 22.

SNV

FV = FLSQSH = 3.0 for all of squish region above the piston,

FV = FLDOME = 4.0 for vertices within the head volume but not on the head, and

FV = FLHEAD = 5.0 forvertices on the head surface itself.
In a vectorized DO loop over all vertices (e.g., DO 1014 = 1, IJKALL), CVMG- statements-
are used that embody FV information in such a way as to ensure that deactivated vertices
have no effect..

G. Fuel Sprays

The fuel spray injeetion model in KIVA-II-is sufficiently general that a wide variety
of engine injectors or continuous sprays may be specified through input data alone. For
many users, subroutine INJECT should require no modification. Features of the injection
model include a multiple or multihole nozzle capability, with continuous or pulsed hollow
cone or solid cone sprays whose origin, profile, and orientation are easily specified. Pulsed
sprays may be sinuseidal; square-wave, or be supplied witha-tabularvelocity profile-
appropriate for hole-type nozzle injectors. Either a fixed particie radius or a distribution
of radii may be injected..
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Fig.25. The four stagesin the generation of the mesh in Fig. 22:
(a) Theoriginal mesh with an arched piston top,
(b) The addition of a domed head,
(¢) The offset of the domed head,

(d) The adjustment of the head shape to a semi-ellipsoidal form, when viewed
from above.

These features are now discussed in detail.

1. Spray Origin, Profile, and Orientation. (See Fig. 26.) The input quantity
NUMNOZ specifies the number of spray nozzles (1 to 12). For each nozzle, the radius in em
to its location is specified by DRNOZ, measured from (X0,YO), which is the cylinder axis,
or in the case of a planar mesh, the front-left-bottom corner of the mesh. The azimuthal
rotation in degrees is given by DTHNOZ, measured counterclockwise from the y=0 line.
DZNOZ, in cm, locates the nozzle in the axial direction. If DZNOZ < 0, it is interpreted as
a distance below the topmost point of the head. This is generally appropriate for engine
applications. IF DZNOZ > 0, it is interpreted as a distance above Z(1). This is the
appropriate choice for a spray in a fixed mesh, such as a spray combustor or burner.

In order for momentum exchanges with vertices to take place properly, subroutine
INJECT ensures that the spray is at least one half cell out radially from the axis in sector
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HOLLOW- CONE- SPRAY:- SOLID CONE SPRAY::

&%

Fig:26. Theinput quantities DRNOZ, DTHNOZ, and DZNOZ locate each spray nozzle;
TILTXY and TILTXZ define the spray axis in 3-D space; CONE and DCONE
allow-for-hollow-cone or solid conesprays.

meshes-and either at-least-a halfcell below the topmost point of the head or a half ceil’
above Z{1).

CONE, DCONE, TILTXZ, and TILTXY, all supplied in degrees, define the profile
and orientation of each spray jet. CONE and DCONE provide either a hollow cone spray
or a solid cone or pencil spray. CONE is the mean cone angle for hollow cone sprays,; and-
DCONE is the thickness of the spray. If CONE isinputidentically equal to DCONE, a

‘solid spray results.

The orientation of the spray axis for each nozzle is defined by TILTXZ and TILTXY,
where TILTXZ gives the x-direction inclination from vertical in the x-z plane and
TILTXY specifies the rotation of the spray axis in the x-y plane. As with DTHNOZ,
TILTXY is measured counterciockwise from the positive x-axis. Inthe case of asector
mesh with NY = 1, the model assumes thatthe sprayjetisazimuthally centeredin the
half-degree sector; by enforcing TILTXY = THSECT/2.

2. Spray Flow Definition. Severalinputquantitiescharacterizetheflow: The-
quantity PULSE differentiates between continuous and pulsed spray injection. PULSE =
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0.0 is used for a continuous spray, for which TSPMAS is the mass flow rate in g/s, and
TNPARC is the number of computational particles injected per second. Alternatively,
PULSE > 0 defines a pulsed spray, for which TSPMAS is the total mass in grams to be
injected, and TNPARC is the total number of computational particles to be injected.

Clearly, the accuracy of the spray model improves as the number of computational
particlesis increased, but the code can be significantly slowed down, especially by the par-
ticle collision subroutine. The code automatically calculates the mass per computational
particle to ensure that the correct total mass or mass flow rate is injected regardless of the
choice for TNPARC, which is governed solely by computer time and storage constraints.
Some typical values for TNPARC that we have used in engine calculations are 500-1000
(2-D) and 2000-5000 (3-D). For a continuous spray, we typically inject TNPARC =
40000/s. Because of evaporation and an outflow boundary, particles are continuously
being destroyed, so that we can get by with a dimension NPAR of only 5000 for the
particle storage arrays.

Computational particles are injected with speed VELINJ ecm/s, and the angular
distribution of particle velocities is uniform within the internal DCONE. The density of
the fuel in g/ccissupplied as RHOP, and TPI is the fuel temperature in Kelvin. Particles
are moved in subroutine PMOVTV, which will also add the effects of turbulent velocity
fluctuations if TURB = 1.0.

Three types of pulsed sprays are available: PULSE = 1.0 defines a spray whose
mass is injected in a single half sine-wave pulse. PULSE = 2.0 defines a spray whose
mass is injected in a single square-wave pulse. PULSE = 3.0 defines a pulse whose veloc-
ity profile is supplied by VELINJ, which here is a table of NUMVEL (up to 100) entries.
For this case, subroutine RINPUT calculates the total fuel mass predicted by the velocity
table, using the sums of the nozzle areas ANOZ( ), and corrects the velocity profile up or
down by the ratio of mass desired to mass predicted. This case is appropriate for hole-type
nozzle injectors, rather than pintle nozzles, as the nozzle areas at present are assumed to
remain constant with time.

For the cases PULSE =0.0, 1.0, or 2.0, however, NUMVEL should be 1, the velocity
being assumed constant at VELINJ(1). (A comment in subroutine INJECT lists a one-
line modification to allow the sinusoidal case to have a sinusoidal velocity profile, in
addition to the mass profile.) In addition, ANOZ() can be input simply as 1.0 for these
three cases.

Injection commences at crank angle CA1INJ and has a duration of CADINJ degrees.
CA1INJ is given in degrees ATDC, and hence usually has a negative value. Injection may
also be controlled in terms of problem time, which is more convenient for continuous sprays
and other nonengine applications. In this case, the appropriate starting time and dura-
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tion are supplied as T1INJ and TDINJ. For a continuous spray, TDINJ should be set to .
A negative value for TLINJ ‘indicates to the code that CA1INJ and CADINJ are to be used
instead.

3. Particle Radius. Eitheradistribution of particle radii (INJDIST = 1) or
particlesof a fixed radius (INJDIST = 0) may be injected. When a drop size distribution is
specified, we sample randomly from a-distribution about-the Sautermeanradius (SMR),
inputinem: The distributionis patterned-after experimentally observed data and is
described in Appendix D.

In the case of a fixed radius; thevalue supplied under the name SMR isinterpreted
as the fixed nozzle radius, in cm. The aerodynamic breakup model should be used
(BREAKUP = 1.0) to create a spectrum of sizes, althongh the hreakup model isappropri-
ate in general for both the INJDIST = 1 and INJDIST = 0 options. AMPO is the initial
amplitude of droplet oscillation at the injector, based upon a Webher number estimate..

After injection, the particle size is reduced by breakup, if BREAKUP = 1.0, and
through evaporation, if EVAPP = 1.0. Liquid fuel particles disappear as they evaporate,
as subroutine REPACK destroys any particles whose mass falls below 10~ 3 of the mass of

an injected particle. Conversely, particle size increases through coalescence from colli-
sions, if KOLIDE =1. Particlesare splitin REPACK into two identical particles, each
with haif the number of droplets, if their mass grows to twice the mass of an injected
particle.

4. Stochastic Injection, When using the large timesteps possible in KIVA-TI, the
tendency is to injectin bursts, resulting in discrete clumps of computational particles.

These clumpsmaythen move more than one-cell percycle; causing-an-uneven coupling-
with the mesh cells and vertices along the particle path.

Tomitigate this source of computational inaccuracy, KIVA-Tl injectseach particle at
some random point along the particle trajectory behind the injector. The particles are
then immediately moved forward in subroutine PMOVTYV to their effective initial loca-
tions. This stochastic injection offers a smoother and more uniform particle distribution,
resulting in improved coupling with the mesh; and better statistics when-spray particle-
positions and radii are averaged over time.

H. SparkIgnition

Spark ignition is provided by a special energy deposition at the end of the kinetic
chiemistry subroutine CHEM:. The ignition window is specified either by crank angle
(CATIGN to CAIIGN + CADIGN) or problem time (T1IGN to TLIGN + TDIGN),in a
manner analogous-to thespecification of the injection window discussed above. During
ignition, the specific internal energy in the specified ignition cell(s) is increased by a
factor of (1.0 + XIGNIT*DT) on each timestep. If the temperature in the ignition cell(s)
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reaches 1600 K before the end of the ignition window, as it ordinarily does, then the spe-
cial energy deposition is terminated at that point. The ignition cell(s) are specified in the
input data as the DO-loop range defined by IGNL(1) to HGNR(1), JIGNF(1) to JIGND(1),
and KIGNB(1) to KIGNT(1). This allows the choice of a single cell or a block of cells. If
JIGNF(1) = 1 and JIGND(1) = NY, ring ignition will result in a 3-D ¢ylindrical run.
Dual ignition is an optional feature, as a second ignition region may be specified by
setting IGNL(2), IGNR(2), JIGNF(2), JIGND(2), KIGNB(2), and KIGNT(2) to nonzero
values.

Spark ignition in our UPS-292-SC engine calculations? was accomplished in a
unique manner. In the UPS engine, a pencil spray of fuel impinges on a spark plug which
commences firing when the spray starts and continues firing for 35 crank angle degrees.
Our procedure was to not allow fuel and oxygen to coexist in the cells containing the spark
plug tip during the 35° period. Each cycle, any available fuel or oxygen was consumed
through direct conversion to COg and H9O in accordance with the oxidation reaction, with
appropriate heat release. While quite satisfactory, this procedure is applicable only in
such specialized circumstances and would be totally inappropriate in more general appli-
cations in which the fuel has experienced significant evaporation and premixing prior to
ignition.

I. Initial Bessel Function Swirl Profile

Internal combustion engines are designed to impart a significant amount of swirl in
the incoming air, to aid in turbulent mixing and enhance combustion efficiency. The
simplest model assumes that the swirl velocity has a wheel-flow profile, but this is not
usually a realistic assumption, as the turbulent wall boundary layer forces the swirl
velocity to decrease in the wall region. From experimental observation, modelers have
determined that a Bessel function profile more accurately represents the flow.

Figure 27 illustrates the Bessel function velocity profile provided in KIVA-IT and
compares it with wheel flow for the same swirl number. The quantity a (input as
SWIPRO) is a dimensionless constant that defines the initial azimuthal velocity profile
and lies between 0.0 (the wheel flow limit) and 3.83 (zero velocity at the wall). A value
suggested by Wahiduzzaman and Ferguson®8 for typical engine applications is about 3.11.
We define our Bessel function profile to give the same angular momentum as wheel flow
with the same swirl number. Thus the initial slope of the a = 3.11 curve is necessarily
higher than the corresponding slope for wheel flow.

A second input quantity, SWIRL, is the initial swirl ratio of air r.p.m. to crankshaft
r.p.m. When viewed from above, the swirl is clockwise if SWIRL > 0 and counterclock-
wise if SWIRL < 0.
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Fig. 27. Bessel function swirl velocity profile provided in KIVA-II setup.

J.  Fuel Library

The release version of KIVA H assumes that 12 chemical species are present, al-

though this number can be increased or decreased asneeded. The 12 species, appropriate:
fcrr—’a'vari’etyiafcﬁmbusﬁon'appiications’ arel ={uel; 2= 09,3 = Ng,4 = CO2, 5 = H20,

=H,7=H9,8=0,9=N,10 = OH, 11 = CO, and 12 = NO. The sample input data-
deck:ggntams kinetic and equilibrium chemistry data-that-correspond to these 12-species.
Enthalpy tables are required for all species, and because species 2-12 have been defined,
enthalpies for them are provided in DATA statements in subroutine RINPUT,

What remainsis to define the fuel, species-1, which requires-a number of other prop-
erties in addition to its enthalpy. For this purpose, KIVA-II contains a library of the
thermophysical properties of 12 common hydrocarbon fuels, embodied in BLOCK DATA
FUELIB. At present, the 12 fuel choices are

methane (CHy),
propane (C3Hzy),
n-heptane (C7Hye),
n-octane (CgHisg),
n-dodecane (C12Hz26),
n-trideeane- (CisHag);.
n-tetradecane  (C14H3q),
n-hexadecane (C1gHz34),
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acetylene (CoHo),

ethylene (C2Hy),
benzene (CeHp),
and diesel fuel (DF2).

To select from this list, the user supplies the fuel formula as a mnemonic in the input data.

Subroutine RINPUT then calls FUEL, which performs the following steps:

1)  The fuel formula is correlated with an entry in a tabular set of mnemonies, to verify
that the requested fuel is one of the 12 available and simultaneously to obtain an
index for accessing the data associated with that particular fuel.

2) The fuel enthalpy table is loaded.

3) The molecular weight, critical temperature, and heat of formation are defined for
the fuel.

4) Ifthe fuel is normally gaseous (methane, propane, acetylene, or ethylene), the input
flags for parcel evaporation, collisions, and breakup (EVAPP, KOLIDE, and
BREAKUP) are checked. If they are all off, FUEL has completed its task and control
returns to RINPUT. If any of the three flags is on, the run is terminated with a mes-
sage that the input data are inconsistent.

5) Ifthe fuelis a liquid, several more quantities are set. These are the tables of liquid
latent heat of vaporization and liquid vapor pressure, for use in droplet evaporation,
along with a table of liquid viscosity, for use in droplet breakup. In addition, the
slope and y-intercept of the surface tension vs temperature linear fit are defined.
These are based on the surface tension at 350 K, which is a typical fuel temperature,
and the critical temperature of the fuel. These are used in the surface tension linear
fits in droplet collisions and breakup. Finally, the coefficient for fuel diffusivity in
air is set, for use in droplet evaporation.

The tabular information in FUELIB has been drawn from a number of
sources.3851-53,59 In several cases, these sources do not contain sufficient data to complete
the tables at one end or the other of the temperature range. This is true at the low temper-
ature end for some of the latent heat tables, and at the high temperature end for some of
the liquid viscosity tables. The comment lines in FUELIB identify the sources of the
various tabular data and note where extrapolations from published data were made in
order to complete the tables.

The user should thus be aware that development of the library for less-completely
documented fuels is an ongoing project. Contributions would be welcomed for inclusion in
future code versions, both for improving the data for the existing 12 fuels and for fuels not
presently included.
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The final consideration concerning fuelis its inclusion in.a Kinetic chemical reaction.
To accomplish this, the user must Supply an appropriate input data set, as required for
each kinetic reaction. The data set is comprised of forward and backward pre-exponential
factors, activation temperatures and temperature exponents, along with stoichiometric-
species coefficients on the left and right sides of the reaction and exponents of species
coneentration in-boththe forward and backward rates of the reaction. Kinetic chemistry

isdiscussedin detailin Appendix 1.

K. Inflowand Outflow Boundaries

Some engine and nonengine applications-have geometries that require use of inflow"
and-cutflow boundaries: Accordingly, we-have providedinflow andoutflow optionsofa.
type that may be encountered. Ifinput flag BOTIN =1.0, the entire bottom boundary of:
the mesh is an inflow boundary. If BOTIN =0.0, then a rigid wall is used for the bottom
boundary. At the inflow boundary the normal velocity WIN is specified. Either one, or
both, of the right and top boundaries of the mesh may be outflow boundaries. Input fl:
RTOUT controls the right boundary specification, with RTOUT =1.0 denoting-outflow
and RTOUT=0.0 denoting a rigid wall. The boundary lies between the I=NX and
I'=NXPplanes of cells. Input flag TOPOUT performs an analogous role for the top bound-
ary, which is the boundary between the K =NZ and K=NZP planes. Atoutflow boeund-
aries, the pressure is specified to be input value PAMB. Atboth boundaries, we assume
the flow.is subsonic. We now describe the inflowand outflow options in-detail, tell what
subroutines-are modified toincorporate them; andtell how they may be modified for
supersonic flows. Although the inflow and.outflow.options are rather limited,; it-isheoped-
that they can be used as a guide-to incorporating boundaries with-differentlocationsand:
different conditions.

In addition to the normal.velocity WIN, at inflow-boundaries we specify reference-
speciesmass densities SPDINO(M), specific turbulent kinetic energy TKEAMB, and tur-
bulence length scale SCLAMB ( ~ k3/2/g). The reference densities are at reference pressure
PAMB; the values that are actually imposed at the inflow boundary are obtained from:-

iy
SPDIN(M) = SPDINO(M) (P/IPAMB) ™

where P is the computed pressure in the cell with K index equal to one immediately above-
the inflow cell and y,,,; is the ratio of specific heats of the inflow mixture. Thus at an in-
flow boundary we are imposing the species mass fractions-and the entropy of the incoming:
fluid and obtaining the pressure by extrapolation.and the densitiesfrom-an isentropic gas-
equation of state. The inflow internal energies are obtained from pressure P and densities
SPDIN(M) using the-equations of state (10) and (11). One inflow tangential velocity com-
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ponent is specified and the other is calculated. In cylindrical mesh geometries, the azi-
muthal or swirl component is specified to be zero. In planar geometries, the y-component
of the velocity is specified to be zero.

We note here that the values SPDIN are used for computing mass fluxes but are not
used to compute diffusive fluxes at the inflow. In fact, the diffusive fluxes of all cell-
centered quantities are taken to be zero at the inflow boundary. This will introduce little
error if the Peclet numbers, which give the ratios of the convective to diffusive fluxes, are
greater than unity. If this condition is not satisfied, then the appropriate coding changes
should be made to calculate diffusive fluxes at the inflow boundary.

The above inflow boundary assumes subsonic flow. If the flow is supersonic, then all
thermodynamic conditions and all three components of the velocity should be specified.

At the outflow boundary, the pressure PAMB is specified a distance DISTAMB out-
side the outflow boundary. This is accomplished in the following manner. For a regular
cell face a that lies on the outflow boundary, one of the faces y of cell-face control volume a
also lies on the outflow boundary. In differencing Eq. (86) to find (uA)aB, we take the
pressure on cell face y to be

§2/2 - PAMB + D[S’I'AMB-[cbppB =P,

b= 8242 + DISTAMB ’

where 8z = Vjjp /|Aq| and cell (i, j,k) is the interior cell containing face a. When
DISTAMB = 0, this gives p = PAMB. This is a true specified pressure condition, which
unfortunately reflects acoustic waves perfectly and can affect the upstream flow in sub-
sonic calculations. Taking DISTAMB to be a characteristic dimension of the computation-
al region greatly reduces acoustic wave reflection at the outflow boundary. This also al-
lows more rapid convergence when computing steady state flows, by reducing the problem
time required to reach steady state. In addition to the above pressure specification, to im-
plement an outflow boundary we set the vertex velocities equal to those one vertex in from
the boundary: u; j NzZp = u; j Nz at an outflow boundary across the top, and unyxpj i =
unx, jkatan outflow boundary across the right. We also use donor cell differencing to
compute outflow convective fluxes.

When the flow at the outflow boundary is directed out of the computational region,
no further specifications are needed. Occasionally, however, the pressure condition will
generate velocities directed into the computational mesh. When this%ccurs, it is also nec-
essary to prescribe the mass fractions, entropy, turbulent kinetic energy, and turbulent
length scale of the incoming fluid. This is accomplished through input reference species
densities SPDAMB(M), referenced to pressure PAMB. The inflow densities and internal
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energy are then found in a manner analogous to that used at the inflow boundary. The.
inflow turbulence quantities are taken to be TKEAMB and SCLAMB.

No modification of this outflow boundary treatment is required when the flow is
supersonic. Although specification of the pressure is incorrect’in this case, the errors
incurred by this specification will not propagate upstream in the supersonie flow.

A number of subroutines-are modified to allow forthe inflow and outflow options.
Vertex and cell face velocities are prescribed in subroutines BC and BCEC. Since¢ isnot-
specified near inflow or outflow boundaries using Eq. (53), this specification must be dis-
abled in subroutines BCEPS and BCRESE. Similarly, law-of-the-wall velocity and tem-
perature conditions should be disabled in subroutine LAWALL. Convective fluxes are
modified in subroutine CCFLUX, and the pressure is specified at the outflow boundary in
subroutines PEXDIF and RESP. In making any modifications for inflow or outflow
boundaries, the user should consider these subroutines carefully and use the existing-code-
as a guide..

L. Qutput

Monitor prints are produced on the user’s remote terminal (our unit.59) at least
every 25th cycle. The variables KIVA-Il prints are listed in subroutines NEWCYC and
TIMSTP. In-addition; informational anderror messages are always sent to the user’s
terminal. Except for the above, all KIVA-II output is written to file PLOT, which can be
scanned on a CRT-equipped terminal and/or disposed to the operating system to be proc-
essed onto microfiche. A four-line monitor print is written on PLOT every cycle, in addi-
tion to copies of any messages sent to the remote terminal.
LPR = 1. The WRITE statementsin subroutine LNGPRT indicate the variables listed,
which may easily bechanged. Becauseofthevast-amountof numbers-a multidimensional’

Numerical cell data are optionally available, being produced only if the input flag

code produces, we almost alwaysset LPR = 0 and rely on plots,; except when debugging.
Even then, an interactive debugging utility is generally more useful than a blanket cell.
print because the utility can print selected numbers at the user’s terminal at any desired-
point in the calculation.

Graphics-are the most useful form of output, and information for computer-
generated plots is also writtento file PLOT. Thisis followed by a short summary of -
system totals, computed by subroutine GLOBAL.

Subroutine FULOUT is responsible for calling the various plot and print.subrou-
tines. Output is automatically provided for cycles 0 and 1, and thereafter at cyclic inter-
vals (NCFILM), time intervals (TWPLT), or crank angle intervals (CAFILM), as specified_
in the input data.
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KIVA-II can provide three different types of plots -- zone and spray, velocity vector,
and contour. The first set of zone plots are simple two-dimensional views through (x-z)
planej = 1 and the opposite (or closest to opposite) j plane if 3-D. The first plot is a mesh
cross section that shows all zone edges. The second plot is the mesh outline plus only those
spray particles currently in the j = 1 plane and the opposite j plane if 3-D. The third plot
is again the mesh outline, but with all spray particles plotted regardless of their j plane. A
fourth zone plot is an overhead view of the mesh that also includes all the spray particles.
If there are no spray particles present at the time the plots are drawn, the second and
third plots are omitted, as is the fourth plot unless the output is for cycle 0. For 2-D
applications, only the first two zone plots described above are created, as the third and
fourth plots would be meaningless.

The remaining zone plots, in addition to all the velocity vector and contour plots, em-
ploy our perspective plot logic. For 2-D applications this is automated, but for 3-D applica-
tions the logic requires specification of input data. Thisis all described in Sec. IV.M.

The plotting routines provided in KIVA-II are adequate for the needs of many users.
Because these routines require only graphics primitives (point plotting and vector
drawing), they are adaptable to other systems without too much difficulty. Other users,
however, will want to use KIVA-II with their own graphics post-processors. Accordingly,
we have provided the basic connective linkage for post-processing in KIVA-II, which will
simplify the task. Itis controlled by the following three input quantities:

° IPOST is the post-processor flag, where 0 means no post-processor file is desired, 1
means to make post-processor dumps onto file TAPE9 starting with this run, and 2 means
to continue dumping onto a previous TAPE9, which must exist in local file space.

° CADUMP is the crank angle at which to start dumping onto TAPE9.

° DCADMP is the crank angle interval between dumps, after crank angle CADUMP
has been reached.

TAPE9 is initialized or resumed by subroutine DMPINT; writing of file TAPEQ is
performed by subroutine DMPOUT. Because each user of a post-processor has their own
specific needs, the variables written in the DMPOUT routine provided in KIVA-IT are
intended only as an example of those quantities that are generally useful.

M. Perspective Plots

The development of three-dimensional computing techniques has brought particular
difficulties in the effective presentation of results. We have attempted to display as much
useful information as possible by offering perspective pictures, made in the same manner
as a photographic record of a three-dimensional scene on a two-dimensional negative.

The perspective plot logic described below is used in producing zone, velocity vector,
and contour plots for both 2-D and 3-D applications. However, for 2-D applications,

88




KIVA-IIsubrountine RINPUT automatically specifies simple head-on 2-D views for each-
quantity plotted, and the user need not be concerned with supplying perspective view-
data.

The plot-generating subroutines ZONPLT, VELPLT, PVPLOT, and CONTUR can
create a variety of perspective views of the computing grid with spray particles, in addi-
tiorrto fluid velocity vector, spray parcel velocity vector, and contour piots of selected cell’
variables. Forthe grid plots, some selected number of the three bounding faces of our
pseudo-polar grid are to be drawn. For the vector and contour plots; hewever, we simply-
outline-the-edges of the grid and present-aselected-planesfvectorsor contours within-this-
framework.

Only a few simple concepts are required to deseribe howa-perspective view is gener-
ated. The fundamental conceptisthatofthe transparentimage plane, analogousto the
film in a camera, on which the perspective image is traced (Fig, 28). Teminimize-distor-
tion, however, we chose-an image plane perpendicular to the average line of sight, which
~ extends from some point (x¢,yc,zc) near the mesh center out to the eye point (x¢,¥e,2e);
assumed to lie well outside the mesh.

ol \‘1’ilil%‘i|l!l"'£-'l‘i-

Lkt 12,
v

Fig.28. Construction of perspective picture on-an image plane. From New Principles of
Linear Perspective by Brook Taylor, published in 1715.



A pair of perspective coordinates (e,1) relates a point on the image plane to a point
(%0,Y0,20) in the mesh region and can be obtained by performing suitable transformations.

In our case, these are

yl)—ye

_ . 3U—Ze
q:ze_‘ye - _—' ’

yU ye

in which

x =(x —xc)cos() + (y-—yc)sih‘O s

= cosPly — y,)cos B — (x - x)sin 0] —(z ~ 2 ) sind

<

N}

= sin(bl(y—yc)cos() —(x = xc)sinOI + (z—zc)cosrb .

The two angles 0 and ¢ measure the rotation and the tilt, respectively, of the line of sight

with respect to (x,y,2) space as indicated in Fig. 29.

Fig.29. Relationship of the rotation angles ¢ and 6 to the (x,y,z) coordinates.
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From the figure, it isevident that
g£= [(xe - 'xc)‘2 7+ (ye - yc).zli% ’

_ 2 2%
r=lz, -z +g"1",

from which

{

A

= —-X:
oo\
H

0 = Arcsin ( ”g = )

o

if viewed from the front, (y. — y.) < 0. If viewed from behind, (v, — yc) > 0, then

y, =Y n
= — ?A"i‘csiﬁf*/? 2 c'\ )i‘-"-’l fo"r" {x- —x \;"<’{}",
[ \ g / 2 J € ¢
Y, =Y.\
8= Arcsin| —— |+ = for (. —x Y>>0
g T2 e ¢
my

Theorigin and scale ofthe () coordinates are not required beeause-we choase a:
constant shiftthat centers the meshoutline in the plot frame and a constant scale factor
that maximizes the size of the mesh drawn in the available plot frame area. This scaling
is done in KIVA-II hy first computing the (§,n) coordinates of all mesh vertices and then-
testing for their maximum and minimum values. .

Because a straight line segment in three-dimensional space transforms into a
straight line segment in the perspective view, only the end points require transformation
according to the above eguations, and the resulting points are connected by a straight
line.

In KIVA-T, we have defined x. = yo = 0.0, and z; = {zof the cylinder head minus-
halfthe stroke), assumingcode applications will be to internal combustion engines. For
3-D plane coordinates, the user should redefine x., y., and z. to lie at the center of the
mesh. These statementscan beeasily changed in KIVA-Il'subroutine RINPUT. Current-
ly, we allow up to five views each for grid plots, velocity vector plots, and contour plots, as
perthe parameter LV at-the beginning of the code. Requiredinput quantitiesfor each-
individual-3-D plot-areas{ollows:
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Grid Plot: XEZ, YEZ, ZEZ, IFACE(6), IEDG, in which the first three refer to
(xe,¥es2e) in (x,y,2) space. IFACE is a set of six integer flags that correspond to the six
bounding faces of the logical mesh: left, right, front, derriere, bottom, and top, respective-
ly, where a value of 1 means to include and a value of 0 means to exclude the face in the
plot. For the 3-D pseudo-polar mesh, appropriate perspective-view valuesare 0,1,0,0, 1,
1 to draw the right (cylinder wall), bottom (piston face), and top (cylinder head). Finally,
IEDG = 0 will draw line segments between all vertices lying on selected faces, and IEDG
= 1 will draw only the outlines of the selected faces. The IEDG feature is intended for use
in 3-D plane coordinates.

Velocity Vector Plot: XEV, YEV,ZEV,ISLV,JSLV, KSLV. Again, the first three
refer to (x.,ye,2.). The last three are integers of which only one can be nonzero. The non-
zero choice identifies the I, J, or K index of some plane in the logical mesh where we make
a “slice” and draw vectors of the vertex velocities as they would appear normalized in the
plane. For anIslice [0 < ISLV < (NX + 1),JSLV = KSLV = 0], the plane isin (y,z)
space. In a 3-D pseudo-polar grid, an I slice plot would be a wraparound at some radius
and probably would not be too useful. Of real value for this grid, however, are J and K
slice plots. Fora Jslice [0 < JSLV < (NY + 1),ISLV = KSLV = 0], the plane isin (x,z)
space. In a 3-D pseudo-polar grid, the velocity vectors for the j plane JSLV are drawn on
the right side of the frame, and vectors for the opposite (or closest to opposite) j plane are
drawn on the left side of the frame. Fora K slice [0 < KSLV < (NZ + 1),ISLV =
JSLV = 0], the plane isin (x,y) space. In all cases, the vector length drawn is scaled to the
maximum velocity in the plane being plotted.

Contour Plot: XEC, YEC, ZEC, ISLC, JSLC, KSLC. These are analogous to the
quantities defined above for the velocity vector plots, except that individual contour plots
are drawn for each view specified. Contour plots may be drawn for up to 26 different cell
variables, selected according to the set of 26 binary flags in the ICONT input line. The
DATA statement in subroutine CONTUR and the comments in subroutine FULOUT
describe the sequence. The same remarks concerning slices apply to contour plots, but
because contour plots relate to cell-centered variables rather than velocities, the “+1” on
the range is inapplicable. As provided here, contour plots are composed of vector segments
joining points of equal value and are linear in contour increment. Contours are automati-
cally connected across the center (atI = 1) in both J and K slice views in the 3-D pseudo-
polar grid, and are drawn tothe j = 1 andj = NYP boundariesin K slice views of a 3-D
sector mesh.

In both velocity vector and contour plots, it is best to define the eye point such that
the line of sight will be as perpendicular as possible to the selected plane. When the eye is
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not located too far above the mesh, a more pleasing appearance is often produced by setting
2e = 2e. Asaresult, d = 0, which keeps the image plane perpendicular to the (x,y) plane..

Often we prefer to eliminate perspective entirely. For example, a set of (x,y) velocity
vector and contour plots at various k-plane levels viewed from straight overhead general-
ly proves more useful than views from some artistic angle. To produce a straight overhead
view, setxe = yo = 0:0 and z; = »(10'%is adequate). Note; however, thaty, = 0.0 will’
cause the 3-D pseudo-polar plot to be rotated 45° such that'the periodic houndary (J-=1)-
will appear at the 4:30 position. To mentally orient ourselves, we prefer to always have
the periodic boundary at the 3 o’clock position. Thisis achieved automatically if we
instead specify yo = — RPO(NPO) rather than y, = 0.0.

The coordinate system-on our CRT face has its origin (0,0) at the upper left corner,
and the values of the two raster indices increase to the right and down to maximum values.
0f 1024. A conversion from image-plane coordinates to corresponding CRT coordinatesis-
thusrequired for all plotting: In KIVA-II; the view on'the image plane extends from §; to
&g and from g to ng, with CRT counterparts FIXL to FIXR and FIY B to FIYT. To leave:
room for labeling, we limit the available CRT face to 1022 raster points-wide and 900-
points high. Within this rectangular region, we maximize the image-plane view drawn,
which requires the ratio

/. R*— L N
XD = .
(%)

If the image-plane view is higher than it is wide [that is, XD < (1022/900)], then the CRT
plot range is given by

FIXL = 511 — 450(XD)-,

FIXR = 511 + 450(XD) ,

FIYB =900 ,
and-

FIYT'=0".
Conversely, if the image-plane view is wider than itis high {XD >-(1022/900)], then the
CRT plotrangeis

FIXL =0,
FIXR = 1022,
FIYB = 900 ,

and
FIYT = 999 — (1022/XD) .
Ineithercase, we can now calculate the two conversion factors
XCONV = (FIXR — FIXL)§, —&;):
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and

YCONV = (FIYB — FIYT)/(np — ng) ,
required to translate image-plane coordinates for the view being drawn. Thus, if (§,n)
represents some point on the image plane, the corresponding CRT position (IX,IY) is given
by

IX = FIXL + (§ — § (XCONYV)
and

IY = FIYB ~ (n — ng)(YCONV) .

N. Chopper
In engine calculations, the cells can become very thin in the z-direction in the squish

region between the piston face and cylinder head, resulting in severe timestep restric-
tions. To alleviate this condition, subroutine CHOP is used to strip out or add planes of
cells across the mesh above the piston, thus providing a control on cell heights in the
squish region.

When the chopper is used, grid lines are required to be vertical (z-direction) through
the squish region, although radial grid lines are not required to be horizontal. An exam-
ple of a mesh that meets these criteria is shown in Fig. 22. The volume-of-overlap logic in
the chopper accounts only for vertical displacement of vertices. A truly arbitrary volume-
of-overlap algorithm for three-dimensional space would be significantly more complex
and has not been required for any application so far.

The input quantity NCHOP specifies the minimum number of planes to be left in the
squish region and is usually equal to 2 or 3. CHOP automatically removes planes on the
compression stroke and restores them on the power stroke. The parameter LNZP pre-
vents the number of cells added on the power stroke from exceeding the available storage.

The quantity DZCHOP, calculated in RINPUT, is a function of NCHOP. The 8z’sin
the squish region are always uniform, and each cycle 8z is compared to DZCHOP to deter-
mine if a plane is to be added or deleted. The current algorithm for DZCHOP is fairly con-
servative: in typical engine calculations that begin at ATDC = —90°, chopping will occur
between about —45°to —27°, at which time our specified minimum number of planes
(NCHOP = 3) isreached.

O. Dump and Restart o _ ‘
Provision is made for running a problem in segments. If the input quantity

TLIMD = 1.0, the code compares the job time limit to the time used and writes a restart
dump on file TAPES8 when less than 90 seconds of time remain, and the run terminates.
In addition, a dump is produced on TAPES8 every NCTAPS cycles during a run. This
feature is provided to minimize time lost due to system or hardware crash. Each time a
dump is written TAPES is rewound, so that the last dump is the only one saved.
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To continue the problem-on a subsequentrun, the quantity IREST in input data file
is set equal to the dump number. The dump file isread as TAPE7. After reading-there-
start dump, KIVA-II reads the remainder of the input data file. This allows the userto
modify data in'midcalculation if desired: If thisis done, care must be taken not.tointro-
duce inconsistencies.

KIVA-TI-calls-a-built-in random numbergeneratoratseveral places in the spray.
subroutines. This generator is intended to be as portable as possible for use on other com--
puters having different word lengths and attempts to give the same number sequence
regardless of computer: Occasionally, the user may find it desirable to restart from a
dump and calculate identical numbers to those that would result from a single longer run
with no restart in the middle. To allow for this, KIVA-II includes the current seeds RANB
and RANS forthe random number generator in the dump data and resets them as part.of.
the restart procedure..
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APPENDIX A
DETERMINATION OF THE PGS PARAMETER

The objective of the pressure gradient scaling (PGS) method is to scale up the magni-
tudes of the pressure fluctuations in far subsonic flows and thereby increase computational
efficiency without changing other flow features of interest. The method is implemented
by solving equations that are modified only in that the pressure gradient term in the mo-
mentum equation is multiplied by a factor 1/a2. The quantity a is called the PGS param-
eter and is constrained to be greater than or equal one. Itis shown in Ref. 36 that if the
solution to the modified system has pressure fluctuations that are small, in the sense that
8p,/P is small compared to unity where p is an average pressure, then the modified system
will have nearly the same solution as the unmodified system, except that the pressure
fluctuations will be increased by a factor a2; that is

8pa/; ~a?, (A-1)

where 8p are the pressure fluctuations of the modified system.

Since in many problems 8p/p is approximately equal to the square of the Mach
number,5? one suspects that the PGS method is in effect increasing the Mach number by a
factor of a. That this is true can be shown by examination of the acoustic wave equations
with the factor 1/a2 multiplying the pressure gradient term. Itis easily shown that sound
speeds are reduced by a factor 1/a. Computational efficiency is improved because the
efficiency of many numerical methods for solving the pressure equation is improved when
the sound speed Courant number cA#/Ax is lowered,3® and the PGS method lowers the
Courant number by the factor 1/a. The PGS method should not be used in problems where
it is important to calculate acoustic waves accurately. In many subsonic problems, how-
ever, the acoustic mode is not important and the PGS method can be used to enhance com-
putational efficiency.

We now discuss the method for choosing a. The derivation of Ref. 36 shows thata
cannot vary in space but can be time-dependent. It follows from the above brief discussion
that to optimize computational efficiency one should take a as large as possible while still
maintaining 8p/p small compared to unity. In KIVA we choose a to maintain 8p /p < 0.04,
unless the value of a so chosen becomes less than unity. In this case, the pressure fluctua-
tions of the unmodified equations, which are those that pertain when a = 1, have become
larger than 0.04, and we set a = 1 and thereby deactivate the method.
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Inmore detail, the algorithm for choosing a is the following. Each cycle we calculate

7 51}3 \\'it’ g}hg:k - :ﬁ,’r{
{_' —j = max ———, (A-2)
NS 2 P

where

zpuk

- ik .
p"= "1:—;;.;‘*' ~
ijk

According to Eq. (A-1), in order to make the maximum relative pressure fluctuation on_
the next cycle equal to 0.04, we should take a”*1 = o*, where

a*la™ = [0.04/GpJ p)t. , (A-3)

We have found, however, that'taking a®*?! = a* can result in severe oscillations in the
computed values of a. The algorithm in KIVA, which works well in practice, is to take

. a* if a*<a®
n+1l ! { A \ -
a: =4 AL ! . A4y
La"+ — (a* —a". if a*>a" D

T
1A

-

Thus if a* > a™ we allow a to relax to its desired value a* with relaxation time v,. The
time t, is taken to be the maximum of 20A¢" and four times a characteristic acoustic wave
transit time across the computational mesh;, based on a scaled average sound speed ¢/a™
Hence, we take-

B 4 La™) o -
T_,r,:maxn{?}QAt,", _a }/, (A-5)
[ c 5
where
- /14p
¢C =V —=
P
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and p and p are the volume-averaged pressure and mass density in the computational
mesh. If the value of a” 1 from Eq. (A-4) is less than unity, weseta”+1 = 1.

APPENDIX B
TURBULENT BOUNDARY LAYER TREATMENT

Wall functions are analytic solutions to simplified turbulence equations and are
used to infer wall shear stresses and heat losses in lieu of numerical solution near walls of
complete turbulence equations. Numerically, one accomplishes this by matching the com-
puted fluid velocities and temperatures at grid points closest to walls to the wall fune-
tions, which then determine the wall shear stresses and heat losses. Numerical solution
of complete turbulence equations is usually impractical because one cannot provide suffi-
cient resolution. Although it makes computations affordable, the alternative of using
wall functions can introduce large errors because in practice many of the assumptions are
violated that one needs to obtain analytic solutions. In the first section of this appendix,
we derive the wall functions used in KIVA-II and give the assumptions used in the deriva-

tion. In the second section, we tell how the wall function approach is implemented numer-
ically in KIVA-IL.

I. DERIVATION OF WALL FUNCTIONS

In this section we first give the assumptions that are needed to derive the wall func-
tions and the simplified equations that result from making these assumptions. We next
nondimensionalize the equations and thereby introduce a dimensionless wall heat loss .
The quantity {is equal to (J,Pr)/(pu*cpT,), where J, is the wall heat loss per unit area,
u* is the shear speed, and T',, is the wall temperature. It is assumed that { is small com-
pared to unity, and we obtain a perturbation solution for the boundary layer profiles with
Cas the perturbation parameter. Finally, we introduce a change of independent variable
that makes the wall functions easier to implement numerically.

We use the following assumptions to derive the wall functions:

1. theflowis quasi-steady;

2.  the fluid velocity is directed parallel to a flat wall and varies only in the direc-

tion normal to the wall;

3. there are no streamwise pressure gradients;

4. there are no chemical reactions in the gas or on the wall surface;
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5:  therearenospraysources;
6. thedimensioniess wall heat loss (is smail’comparedto uniuy,
7.. Reynolds numbers are large (i.e., p->>pg-wherepgis the laminar viscosity);

and
8. Mach numbers are small, so that dissipation of turbulent kinetic energyisa
negligible source to the internal energy.
The abovelist leadsto provisional wall functions that closely resemblie those commonly
usedin conjunction with the k—e turbulence model. 26" Assumptions 1-6 are frequently
violated at grid points near walls in internal combustion engine calculations. Some of the
assumptions can be made more valid by providing more resolution near walls. For exam-
ple, the measure of the flatness of a wall is the ratio of y, the normal distance from the grid-
pointto the wall, to r; the wall radius of curvature. By diminishing y, one lessens this
ratio, and the wall looks flatter to,the,ﬂow‘,T,he,validity:ofgai.her:assnmptions; for example-
assumption 3, will not be improved with increased resolution. To obtain more universal
wall functions, it would be desirable to relax those assumptions whose validity does not
depend on mesh resolution, and the analysis that follows can serve as-a-basisfor future-
extensions of the theory.
With assumptions 1-8 above; the k —¢ equations near a wall become

a p “
pi——- 1 = constant, (B-1)
a:y w
aT s ~
K — =dJ = constani’, (B-2)
‘,}y, w
A w k) (wN (B-3).
dy \fPrk,ay/'+' Ny —pe=0,
and
3 ( B 68) £ <'8u )2 e (B-4)
== = J+c ~ul—) —cp =0,
y\Pr_ay) Tk \ay) Ttk
where-
k2 (B-5)
n=cp— ,
B g
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K= o® (B-6)
T pr’
p=2p —I_E: T = constant . (B-7)
w

In these equations y is the normal coordinate to the wall and u is the velocity component
tangent to the wall. In the absence of chemical reactions, the species mass fractions are
constant, and hence the mean molecular weight W is constant. Although it is not neces-
sary for the analysis that follows and does not alter the results in any fundamental way,
for simplicity we also assume that ¢, is constant.

We now nondimensionalize the equations. The dimensional quantities character-
izing our problem are the wall shear stress t,, the wall heat loss J,, the wall temperature
T, the wall density p,,, and the specific heat cp. From these a characteristic velocity, the
shear speed, is defined by

x — w (B-8)
ur =V — .

The only quantity with dimensions of length is the distance y from the wall, and accord-
ingly when a length scale is needed, we use y. We nondimensionalize u by u*, T by T, k
by (u*)2, and e by (u*)3/y. Written in terms of dimensionless dependent variables (for
which we use the same symbols as their dimensional counterparts), but retaining dimen-
sional independent variable y, the equations become

B2 (B-1")
—_—y — =1 -
W7 ,
2 J Pru*
cpk_y?zz Lz =y, (B-2")
B e 7 gy cpnw’[‘w
¢, kK o E' (ou\2 '
A w Bk p_y<_U>_pi=0, (B-3")
ylPr, " eyl v %y y
afc K 3 au \2 & ,
_[_Ll_p_y_(*z)]ﬂ cpk(_U>_c L (B-4')
ylPr,” e~ oy \y gy B dy %2 y2%

100



and

vari

£

pT=1. B-7)

We now assume the dimensionless wall heat loss {is small. Each of the dependent
ablesis expanded in a power series in (;

p=p,+p Lt ..., (B-9)

where u;, T, ki, ¢;, and p; are functions of y alone. Now note that dividing (B-2') by (B-1')

yields-
oaTr 4 sy
=%z, (B-10)
gy 3y

0, (B-11)
dy.
and
dr. . .
L for i=0
dy dy :
Consequently T'g = 1 and.
Ty = uhe (B-12)
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where ¢; is a constant. Our strategy will be to solve the equations for an isothermal
boundary layer for ug, kg, and £g9. These zero-order terms in { will be the wall functions for
u, k, and e. Then the temperature wall function will be obtained from the expansion to
first orderin ¢,

T=1+@,+¢c)l, o (B-13)

where we have used (B-9) and (B-12).
Solutions for the zero-order terms are

ky=ct,
g, = [cfl (ce2 - cel)Prel_’} =1/k,
and
u, = 1/x €ny + const . (B-14)

Thus a logarithmic velocity profile is obtained, and the analysis shows that the Karmann
constant x is related to the other £ —e model constants and cannot be independently speci-
fied. For the standard values of the model constants given in Table IT, we have x = 0.4327,
which differs slightly from the commonly accepted value of 0.40.%1 Determination of the
constants in the velocity formula of (B-14) requires consideration of the laminar sublayer,
wherein the laminar kinematic viscosity vp becomes important. A dimensional argument
gives

v =t B, (B-15)

0
K Ve

where the constant B has the experimentally determined value of 5.5 for smooth walls.®!
In dimensional terms, the wall functions for &, ¢, and u become

k= c;*(u*)z , (B-16)

(B-17)
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and.

From (B-16), we obtain

* o, (B:19)
P :

which is the boundary condition used for the k-equationin - KIVA-TI. Equation(B-17)1is-
used directly to determine the value of £ at the centers of computational cells next to

walls. Because of (B-17), whenever a length scale L is needed in the KIVA-IT input or
equations, itis related to k and e by

34 g9
(5

r_ p k

L=
K €

We do not use (B-18) directly for the velocity wall function beeause this would re-
quire iterative solution for the unknown shear speed u*. Instead we change the independ-
ent variable by replacing yu*/v, by its 1/7-power law value®

yu* (3;_ \) (B-20)

'V* -

where ¢, = 0.15. We obtain

§l=
il

A
o
x

—

which can be easily solved for u*, once y and u are known.

Equation (B-21)is only valid in the logarithmic region, where (yu*)/v, > > 1. If
yu*/vp, < 1,then we are in the laminar sublayer-and another formula must be used.
Although the flow in the laminar sublayer is not truly laminar, we use the laminar
formula

N
i

N
—
w
DN
N
SN’

1% iy
u* k

,‘
< |E



The transition between (B-21) and (B-22) is made at the point R = yu/v, where they
predict the same u*. Solving

R = i enlc, R™+B (B-23)
for R, gives R, = 114. Strictly speaking, we should also not apply (B-17) in the laminar
sublayer, but we continue to use it for lack of a better alternative.

Although we obtain the wall shear stress from (B-21), note that if assumptions 1-8
are valid we could also obtain this stress from Eq. (B-16) and the computed value of k at a
grid point in the logarithmic region. Some authors?® use (B-16) to eliminate u* in the
argument of the logarithm in (B-18) and thereby obtain an equation that can easily be
solved for u* once u and k are known a distance y from the wall. To our knowledge, no one
has tested the relative accuracies of these different equations for u*.

We now turn our attention to the temperature wall function. From (B-13), in the
logarithmic velocity region, the dimensional temperature equation is

J Pru*
£~=1+ & (i+c), (B-24)

ct T \u* 0
P w w

where ¢g is a constant whose value must be determined from experiment. Unfortunately,
good experimental evidence for cg is lacking, and we determine ¢g by matching to a lami-
nar temperature profile in the laminar sublayer region. More precisely we assume that

J J Pr,u*
I S (B-25)
T KT ctv T u*
w ¢ w pw w

for yu/vy < R, where K, and Pr, are the laminar heat conduction coefficient and Prandtl
number. By equating (B-24) and (B-25) at yu/v, = R, where u/u* = R %, we obtain

¢ = R%(fif _ 1> . (B-26)

This is only a provisional value for ¢g that must be tested in experimental comparisons.
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II.. NUMERICALIMPLEMENTATICN-

We now describe the numerical implementation of the turbulent boundary layer
equations; first for the momentum equation and then for the internal energy, k-,and-e-
equations. Consider a typical cell adjacent to the wall, as shown in Fig. le‘,\fert-lces e, f,
g, and h lie on the wall, and vertices a, b, ¢, and d are in the fluid. To evaluate the shear
stress we need to know the velocity u tangent to the wall, evaluated a distance y from the
wall; and the laminar kinematic viscosity vy.. The tangential velocity uis evaluated by-
(B-27)

u=[{u +u,+u +u

b D

Equation {B-27) assumes the normal velocity at points-a, b, ¢, and d is negligible, so that
the- uangentialcomponent may be replaced by the magnitude of the velocity. The distance
y from the wall is calculated hy.

A

y=-| iz, — =)+ &, ~x) + &, - x) +(x, — X, WDl ij’t_l (B-28)-

where A, is the area vector of the face of the cell that lies on the wall. The kinematic
viscosity is evaluated by

y, = o o (B-29)
. P
C ll)
/ : /
d ¢ a

Fig.B-1. Typical cell adjacent toa wall:

e R

o

g
[¢]
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where 14;r is given by Eq. (24) and p and T are the density and temperature of the cell.
The shear stress vy, is evaluated using Eq. (B-8) and either Eq. (B-21), if yu/vy > R, or
Eq. (B-22), if yu/v, < R..

With t,, thus determined, the product v,,AA¢ gives the total change in fluid momen-
tum occurring on a timestep due to wall friction associated with the cell in question. One-
fourth of this change is apportioned to each of the vertices e, f, g, and h. These changes are
effected by taking the change in momentum of vertexi(i = e, f, g, h) to be parallel to the
velocity at the vertex next to it and in the fluid. For example the vector momentum
change for vertex e is then

M Su = —1t AAtu™|u”], (B-30)
e e w a a

where M;' are the vertex masses. These momentum changes are added in Phase A. It
should be noted that the momentum changes at verticesi = e, f, g, and h are only those
changes due to the particular wall cell in question. Similar changes to the momentum of
each of these vertices will result from the other wall cells to which it is common.

The formulation given above assumes the wall is stationary. If the wall is in motion
(e.g., a moving piston), it is necessary to transform the velocities into a coordinate frame
moving with the wall before applying the equations. The new velocities must then be
transformed back into the laboratory frame.

The wall heat flux J), is computed from Egs. (B-24) and (B-26), if yu/vy > R, and
from Eq. (B-25), if yu/v, < R.. The specific heat cp is given by its value in the wall cell in
question, and the temperature T is given by the average of the temperatures in the wall
cell and the fluid cell above it. The product J,,AAt then gives the energy lost to the wall,
which is therefore subtracted from the internal energy of the cell.

It is also necessary to allow for the kinetic energy dissipated by the wall friction.
This frictional dissipation is approximated by v, ,uA At, which is added to the internal
energy of the wall cell in question.

Implementation of the boundary conditions for the turbulence equations is straight-
forward. The k-equation condition, Eq. (B-19), is enforced by allowing no diffusive flux of
k through the face of the wall cell that lies on the wall. The value of e in the wall cell is
determined by Eq. (B-17) using the computed value of k in the wall cell and y equal to one-
half the value of Eq. (B-28).
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APPENDIX T
NUMERICAL SOLUTION OF THE EQUATIONS .
GOVERNING SPRAY DYNAMICS

In this appendix, we give the finite-difference approximations to the ordinary differ-
ential equations governing droplet trajectories and to the integrals that give the rates of
mass, momentum, and energy exchange between the gas and spray. We also describe the
solution procedure and the roles of the subroutines in which the spray calculations are
performed.:

The calculated spray source terms are added to the gas mass, momentum, and ener-
gy equations in subroutine PCOUPL. The source term p ;iks’ which gives the rate of mass
addition to the gas per unit volume due to spray evaporation, is differenced as follows:

. A3 N3
pfjk on 2 N_ —,”[(rp,) - (C-1).
VI ut pels, j,k)

The summation is over all particles located in computational cell (i, J>k). The quantities
N'; andr';are provisienal veluesof thenumber and radiusof {dropletsinparticiep:
These may differ from N, and r,/" because of the droplet.collision and breakup caleula--
tions. The liquid density pgis-assumed to be constant-and equal for-all droplets. The-
finite-difference approximation for rp is given below.

The source term Qijks in the internal energy equation is differenced as follows:

1

s 3
- _ Np 2 r, ) - )1, T
], v 2 N, eI - DL,
peli, k) P
e { A\S( ,t _,vj\,{ 1l7 ez ) _{_,l, £ \3, - \3I( t N \2,1, (C—Q)
LY p' Vv P Vo \\p ‘}Emn dp’ 2[(7'1)) \I'p; “Vp ﬁemn) 1.

InEq. (C-2)r, T"dp, and v'p are droplet radii, temperatures, and velocities that have been
partially updated'due to droplet collisions and breakups. The veloeity v v'palsocontains:
the gravitationai'acceleration update. The calculation of the Phase A droplettemperature
po“‘ *is described below, and u’ piscalculated asin Sec. III.C. The subscript (£,m,n) denotes
the indices of the momentum cell in which particle p islocated: The veloc eity vptisapar-
tially updated particle velocity that is obtained by solving the following finite-difference
approximation to the particle acceleration equation:
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vi—v . -3
P_P2_pD @’ +u —vhH. (C-3)
At p Emn p p

In this equation D) is the particle drag function, which is defined below.
The source term W;j.® to the turbulent kinetic energy equation is differenced in the
following manner:

. 1
s _
Wijk -

. 4 b
- — Np 5 Py (r:)s(v; — vp)- u,, (C-4)
Vij kAt pelijk) 3
where vt is obtained from Eq. (C-3).
The gas and droplet momentum equations are differenced in an implicit fashion that
circumvents timestep limitations due to the strong coupling of gas and droplet velocities.

The finite-difference approximation to the gas momentum equation can be written

MG us, = GOl =B — Z N;)i;- mp JeNVE — v, (C-5)
pelijk)

where E;j; represents all contributions to the Lagrangian phase momentum change of

vertex (i, j,k) except those due to spray momentum exchange. The finite-difference

approximation to the droplet acceleration equation is implicit in the gas velocity and

linearly implicit in the droplet velocity:

VB—V

p
At

= B "B C-6
Dp(uijk + u, vp) , ( )
where the drag function Dj is given by

p" u® +u —v
Dz_‘?’.__‘ilf’jk—p._’J.C(Re). (C-7)
P 8 Py A D¥""p
p
The particle velocity v'p has already been updated due to gravitational acceleration. The
drag coefficient Cp and droplet Reynolds number Rep, which are defined in Sec.IL.B, are
evaluated using time level n values of the fluid variables.
When Eq. (C-6) is solved for v,B and the result is substituted into Eq. (C-5), one

obtains, after some manipulation,
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()5, + S duly — GO u® =B R, (C-8)

ik :,jk ijk ijk ik’
where
= S N np i (C-9)
ijk ~ "'p3 "d'p" 14+ AtD
pelijky- I
and
S v Y 1o
—_ N A — 1y D0 FO P _/,'xZ,,' N \,_1 -
Rif'k < J p3 P I.(rﬂ) 1.+ AtD. ) V.n,l,
pe(ijk) 1

depend onrexplicitly known valuesof the gas and droplet variables. These arrays are
calculated in subrontine PMOM. When the Phase B gas velocity isknown; the Phase B-
droplet velocities-are-then computed from Eq. (C-6) insubroutine PACCEL.

The particle radius and temperature changes are obtained by evaporating the par-
ticles sequentially at constant pressure. By coupling the particle evaporation rates more
closely; the sequential evaporation calculation allows the use of larger timesteps than a
simultaneous evaporation calculation. The difference approximations of the evaporation-
calculation are implicitin the droplet-temperature but-explieit inthe gas temperatureand-
vapormass fraction. Even theugh-the particlesareevaporated sequentiaily; thisexplicit-
ness can produce unphysical changes in the computed gas temperature and vapor mass
fraction when heat and mass transfer ratesto a-single particle are large. Topreventthis;
for each particle we compute an evaporation timestep 8t,, based on heat and mass transfer
rates, and subcycle the evaporation calculation a number of times-equal to A#/8¢,, = Ng,,.

The evaporation calculation is performed in subroutine EVAP. We firsi solve im-
plicitly forthe updated droplet temperature. The equation we approximate is obtained”
from Eq. (41) by eliminating R using Eq. (38) and eliminating Qg using Eq. (42):

py3r%, T =K (T—T)Nu, LT )@D), BT )Sh,, (C-11)
where
Y@y -y, - B (C-12)
CE oyl



and Y*(T) is given by Eq. (40). The finite-difference approximation to Eq. (C-11)is

(AREY i enll + B (T )
o %(ru)zc (Tu ) P P _ K’ (;I\’ _ Tu+1) v P
d p ¢ dp Stev air'” ijk dp Nu Bd (TZ+1)
p
mu v v v+1 (C-13)
— L(I‘dp) (pD)m.r Vsh enll + Bd(po W,

where superscript v denotes the value of a quantity after v evaporation subcycles. We
initialize poo = T'dp andrp® =r' p The quantity By is calculated from the formula

* mutl o
Y1(po ) — (Yl)ijk

B (TU+1):
d d * mu+1
P 1 _Yl(Pdp )

(C-14)

Cell (i, j,k) is the cell in which particle p is located, and (f’l),'jk in (C-14) and T,jk in (C-13)
are intermediate values of the vapor mass fraction and gas temperature that have been
modified due to evaporation of particles with subscripts less than p and evaporation of the
current particle p on subcycles less than v. Formulas for these quantities are given below.
The heat conductivity K,;Y and mass diffusivity (pD),;,’ are calculated using ’f,’jk and
po”. The quantities Vgp¥ and VY are given by

vo_ i aqad
Vsh- 2.0 +0,6RedScd

and

v tp, b -1
Ve =20+ 06Ret P}, (C-15)
where the drop Reynolds number Rey, Schmidt number Scy, and Prandtl number Pry are
calculated using rpv, po” and the intermediate gas temperature Tijk.

Following implicit solution of (C-13) for po”+ 1 the drop radius rp?* 1is obtained
from

(D)’ enll + BT%)]+ enll + Bd(fpzzl)]

VY 4
pd sh 2

(C-16)

v+ 1,2 _ 2
(rp Y = max 0.0,(rp) —Stev
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which approximates Eq. (38) for the rate of drop radius change.

The intermediate temperatures and species densities are obtained as follows. Before

the particle evaporation calculation we initialize-

and-

Then aseach particle is evaporated we m.

and

. —_ w "ﬂ’

Mo =PV

(AL Y. e (TN Ay40

M= @DV e »

(R =t 7 o Ryl

(ME D) = @ alijn ¥ Pyp Vi
n'l
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if particle p liesin cell (i, j,k). Finally, we calculate
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These new intermediate temperatures and species densities are then used when calcula-
ting the radius and temperature changes for particle p on the next subcycle or for particle
p+1ifwe have completed the evaporation calculation for particle p.

The choice for 8t is based on the idea that the heat transfer to a computational par-
ticle in one timestep should not exceed some fraction of the energy available for transfer.
The heat transfer rate to a computational particle on the first evaporation subcycle is
approximately

' yomr N -21
Q,=Nu,K (T —-po)2nrpr. (C-21)

The gas energy available for transfer is approximately

— (A (P C-22
E, =0Ty - T, )pyk ijk " ( )

The criterion for 8¢,y is thus
(C-23)
Qpb'tw =[E, .,

where f < 1.0. Using f = & and substituting from (C-21) and (C-22) gives

Ve );
st <= tjk l_]k puk (C-24)
® Nu K. 4nr N
p ar p p

A similar criterion based on mass transfer considerations gives

n n

noyn
5 < PiieY ijk — (C-25)
¢ Sh (pD) . 4nr N

D atr p p

Since Shp = Nup < Vsp, where Vp is given by (C-15), and (pD)gir = Kalr/(cp)gkn = Wgir,
where p,;- is the viscosity of air, we replace (C-24) and (C-25) with the single criterion

n n

o, V..
5 < Ut it (C-26)

sh T air pp
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More precisely, we set 8tpy = Al/N,,, where the number of subcycles Ny, is the smallest
positive integer such that 6t satisfies (C-26).

APPENDBIX D"
PARTICLE RADIUS SELECTION AT INJECTION

Through input switch INJDIST, the user specifies one of two size distributions
associated with droplets injected into the computational mesh. IfINJDIST = 0, a mono-
disperse distribution is used [8(r — ry)], with the injected drop size r, given by input
parameter SMR. This option can be used in conjunction with the breakup model
(Appendix F) to calculate atomization according to the method of Reitz.* One injects drop-
lets with r, equal to the nozzle radius for hole nozzles or equal to half the nozzle-opening-
size for nozzles with pintles. The “atomization” of these large injected drops into smaller
dropletsis-then-caleulated by the breakup model.

If INJDIST =1, a x-squared distribution is-used for the sizes of injected droplets:-

f = me=m D-1

r

where F is the number-averaged drop radius, which for the distribution of (D-1) is related
to the input Sauter meanradiusrg, by-

Fedrg. (D-2)
The quantity-r3, is.given by-input parameter SMR-when INDIST = I. Therearemany-
ways to obtain a specified size distribution when injecting particles because one has the
freedom to choose the number of drops per particle. The method we use, which is also used
in the droplet breakup calculation, samples most frequently those portions of the size
distribution where the most mass occurs. These drops will usually exchange the most.
mass, momentum, and energy with the gas. In the remainder of this appendix, we detail
how the radii of injected particles-are chosen to obtain the specified drop size distribution
(B-1)..

In addition to the drop size distribution (D-1), we can define another distribution g(r)
in such a way that g (r)dris-the probability that a particle has drops with radii-in the
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range (r, r + dr). The number of drops per particle is then proportional to the ratio
f(r)/g(r). Best resolution of the drop-size distribution is obtained where the values of g(r)
are largest, and it follows that to obtain the best resolution of the size distribution where
the most drop mass is located, g(r) should be proportional to the mass distribution r3f(r)
and the number of drops per particle should be proportional to 1/r8. From this it follows
that the total droplet mass associated with each particle should be constant. This con-
stant is determined by dividing the input total spray mass to be injected TSPMAS by the
input total number of parcels to be injected TNPARC.

The distribution g(r) is normalized to unit total weight by taking

r3 -

gl = — e~ (D-3)
6r

According to our procedure for selecting radius values randomly with the distribu-
tion g(r), we must first find the cumulative distribution h(r) associated with g(r), and then
apply the inverse of A(r) to random numbers uniformly distributed in the interval (0,1).
The distribution h(r) can be seen to be

hA=1—-e" 1407 + %(r/;)2+ %(ﬂ?ﬁ . (D-4)
The inversion of h(r) is performed numerically. We store values of h(r) in increments of
0.12rbetween r =0 and r = 127 = 4r33. The value of h(12 F) is taken to be unity. (This
involves only a slight inaccuracy since A(12 F) is in reality greater than 0.997.) If XX isa

random number in the interval (0,1), we find that value of n for which

h0.12r(n — DI < XX <h0.12rnl. N

Then the corresponding drop radius is

r=0.12rn=0.04 rooht - (D-6)
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APPENDIX E
THE DROPLET COLLISION CALCULATION:

Consistent with the viewpoint of the stochastic particle method, drop collisions are
calculated by a sampling procedure. The alternative is to try to represent the complete
distribuiion-of drop properties that arise-due to drop collisions. For example, having cal-
culated the collision frequency between a drop assoeiated with particle A-and‘all drops-
associated with another particle, we could proceed in two ways. In the first way, we could
use the collision frequency to calculate the probable number of dropsin particle- A that
undergo collisions with dropsin the other particle. Torepresent the distribution of colli-
sion behavior, this number of drops would be subtracted from particle A, and one or more
new particles would be created having the properties of the drops resulting from the colli-
sions. We tried such a-procedure with the result that we quickly had more particles than
couldbe accommodated by computer storage. In-the second way,; whichisthe way weuse;
the collision frequency is used to calculate the probability P that-a drop in-particle A will-
undergo a collision with-a dropin the other particle. Then ail'the dropsin particle A~
behave in the same manner; they either do or donot collide, and the probability of the
former.event.is P. Since all thedropsinparticle-A behaveinthe same way; no new par=
ticles have to be-created. Then the probability distribution of outcomes is recovered by
ensemble averaging over many computations or, in-a steady-state-calculation, by time
averaging overa long time. Theabove brief deseription-givesthe basicidea of-ourcolli--
sion calculation, which we will now describe in more detail..

For each pair of particles, the collision calculation proceeds as follows. The collision.
calculation is performed for the pair of particles if, and only if, they are in the same com-
putational cell: To facilitate the description of the collision calculation, we will call the
drops of larger radius “collectors” and those of smaller radius “droplets.” For purposes of
thecollision calculation; the drops-asseciated with-each particle areconsidered-to beuni--
formly distributed throughout the computational cell in which they are located. Thus; we-
calculate the collision frequency v of a collector drop with all droplets-according to-

N, -
2 @-1)

— P 4;_,»2'!, .
v= LAVSEE B N A L =

v
ijk

The subscripts 1 and 2 refer to the properties of the collectors and droplets, No™ is the
number of droplets in particle 2, and V3" is the volume of the cell i which both particles



are located. The probability P, that a collector undergoes n collisions with droplets
follows a Poisson distribution,

P (E-2)

3
n n!

with mean value i = vAt where At is the computational timestep. Thus, the probability of
no collisions is Pg = e—7. A random number XX is chosen in the interval (0,1). If XX <
Py, then no collisions are calculated between the drops in particles 1 and 2.

If XX > Pg, we chose a second random number YY,0 < YY < 1, that determines the
outcome of the collision. VYY (r; + re)is the collision impact parameter b. If b < b,
where b.,is the critical impact parameter below which coalescence occurs, then the result
of every collision is coalescence. If b > b.,, then each collision is a grazing collision. The
value of b, depends on the drop radii, the relative velocity between the drops, and the
liquid surface tension coefficient. The expression we use for b., can be found in Sec. IL.B.

Suppose the outcome of the collision is coalescence. Then the number of coalescences
n for each collector is determined by finding the value for n for which

n-1 n
> P, =XX< Z P, . ‘ ) (E-3)
k=0 k=0

For each collector drop, n droplets are subtracted from their associated parcel, and the
size, velocity, and temperatures of the collector drops are appropriately modified. If there
is an insufficient number of droplets to have n coalesce with each collector, then n is
recomputed so that all No™ droplets coalesce, and the particle associated with the droplets
is removed from the calculation.

There is a timestep limitation associated with the above calculation of drop
coalescence, and this is that the computational timestep At be small compared to the
collision time At4 for the droplets. The latter is given by

Nn.
=v, = —ln(r"+r")2]v —v
n 1 2 1

1 (B-4)
At d d

ol s
ijk

where N1"is the number of collector drops. When At < < Atg, the probable number of
droplets that coalesce in a timestep, which isv; At No™, will be less than No". Hence, most
of the time the number of droplets in particle 2 will not be depleted in one timestep due to
collisions.
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This timestep limitation is much less severe than that we would have required 11 we
hadallowed only one coalescence per timestep. With one coalescence per timestep, we
would have had to compute v6¢ < < 1 where vis given by Eq. (C-1). The equationsforv-
andvg differ in that the number of droplets-No" is used in computing v. In Appendices D
and Fitis shown that we usually have No” > > N?and hencev > > v4.

Suppose now that the outcome of each collision is a grazing collision. In thiscase,
only-one-collision is calenlated for eachrdrop. Thisintroduces-an-additional timestep
constraint that At be small compared to the collision times between drops of nearly equal
size, since grazing collisions usually occur hetween drops of nearly egueal size. Grazing:
collisions are calculated between N pairs of drops, where N is the minimum of N1 and

No: The N-collectors and droplets are then returned to their particles in such a way that
mass, momentum, and energy are conserved,

APPENDIXF

THE DROPLET OSCILLATION ANDBREAKUP CALCULATION

In this appendix we describe the numerical solution procedure for the equations-gov-
erning spray dropletoscillation and breakup. A detailed description of the breakup model.
can be found in Ref. 35 To caleulate droplet-oscillation and breakup, we require two addi-
tional particle arraysyp and jp. The quantity y, is proportional to the displacement of the-
droplet’s surface from its equilibrium position, divided by the droplet radius. Droplet
breakup occurs if and only if y, exceeds unity. The time rate of change of y, is Jp, and the
time rate of change of ,, is given by Eq. (45).

To update the values of y, and ), each computational cycle, we make use of the exact.
solution of Eq. (45) assuming constant coefficients:

W
Yo~ Ton
We- We'\ : 2 )
¥ = = +exp(-tt, )Hy(O) 22 ) coswt + -—(\}(0),+, - \ sin ¢ ‘otl (F-1)
12 o iz /) o o)
where-
pu’r . (F-2).
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is the Weber number, u is the relative velocity between the gas and droplet, a is the sur-
face tension coefficient,

2
Py" (F-3)
He

o~
I
[ )

is the viscous damping time, p, is the liquid viscosity, and

eg 2 _ L (F-4)
2
pdr td

is the square of the oscillation frequency. For each particle we first calculate We, 4, and
2. A value of @2 < 0 occurs only for very small drops for which distortions and oscilla-
tions are negligible. Thusif w2 < 0, wesety,nt1 = jpn+l = 0.

If @2 > 0, we next calculate the amplitude A of the undamped oscillation:

2 n We)? 5';2 s
a=(y- >+(-—>. (F-5)

12 ©

If We/12 + A < 1.0, then according to Eq. (F-1), the value of y will never exceed unity and
breakup will not occur. Most particles will pass the test We/12 + A < 1.0, and for these
we simply update y, and y, using Eq. (F-1):

yr - e
.’)’;H = iVY; + acp(—At/td) (y; - %)cosmm + 1;(5'; + ? tdlz >sinmAtl (F-6)
and
We Yy~ :_sz We
5';“ = (-1—2— —y;+1>/td + exp (—~Att ) [ (&; + )cosmAt - co(y; - -1-2—)sin wAtl . (F-7)

d

If We/12 + A > 1.0, then breakup is possible on the current timestep. We calculate
the breakup time ¢, assuming that the drop oscillation is undamped for its first period.
This will be true for all except very small drops. The breakup time £, is the smallest root
greater than t" of the equation

118



.

v
V!

§1+Acos[w(t—t")+¢l,=l , (F-8).

where
. e
7 12
cos =
¢ A
and
.
_ Yy
BLAMD. = - ==
¢ Aw-

If time "+ Vig less than ¢p,, then no breakup occurson the current timestep, and we use
Egs. (F-6) and (F-7) to.update y, and it

Breakupis calculated onlyifip, < t**'. When thisis true, the Sauter mean radius
r3g of the product drops is calculated from Eq. (31), and Eq. (32) is used to calculate the
velocity w of the product drops normal to the relative velocity between the parent. drop
and gas. When evaluating r32 and w, jp is evaluated at tp, using Eq. (F-1). The radius ry,,
of the-product-drops is thernrchosen randomly from a x-square distribution with Sauter
mean radius3g. Inchoosing ry;, we sample most frequently from those portions of the-
x-squared distribution where the most mass resides, as is described in AppendixB.- To
conserve mass, the number of drops N associated with the computational particle is
adjusted according to.

Nt = Vn/ (F-9)-

P

' \‘.’/

We also add to the particle velocity a component with magnitude w and direction random-
ly chosewrin-a plane normalto the relative velocity vector between the parent drop and
gas. This procedure does not conserve momentum in detail; butit does soon the average.
Following breakup, we assume the product drops are not distorted or oscillating, and_
accordingly we sety " = 3,7V = 0.
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APPENDIX G

CALCULATION OF DROPLET TURBULENT DISPERSION

Turbulence effects on the spray particles are modeled by adding to the gas velocity u
a fluctuating velocity u'p, where each component of u’p is randomly chosen from a
Gaussian distribution with standard deviation V2/3 k and k is the specific turbulent
kinetic energy of the gas in the computational cell in which particle p is located. The
fluctuating velocity u'p is a piecewise constant function of time, changing discontinuously
after passage of turbulence correlation time #;,,5, which is determined by Eq. (37). The
sum u + u'pis then the gas velocity that the particle “sees” when calculating itsdrag,
heat and mass exchange with the gas and its oscillation and breakup. We also subtract
from the turbulent kinetic energy the work done by the fluctuating components in
dispersing the spray droplets.

For each computational particle, we chose one of two numerical procedures for
solving the equations of this model. The choice depends on the relative magnitudes of A¢
and t;,rp. When At < t;,-p, which is most often the case, it is possible to solve for particle
positions xpB and velocities v pB by straightforward difference approximations:

B n
*p = %p — o (G-1)
At p
and
B n
Vo —v
P_P_pwB +u -vB+g, (G-2)
At p ik p P

where D) is the particle drag function (see Appendix C) and the particle is located in
momentum cell (i,j,k). The gas turbulent velocity u'p is held fixed for a number of
computational cycles k such that

n+k—1 n

t <y, =R (G-3)

turb —

where u'p was last chosen on cycle n and tyyrp is the turbulence time evaluated at the
position of the particle on cycle n+ k. Section III.C gives the method used for randomly
sampling for u'p. The velocity u’p also enters in a straightforward fashion in the differ-
ence approximations to the equations for mass and energy exchange given in Appendix C
and the difference equations for droplet oscillation and breakup of Appendix F.
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When At > 4,4 1tis no longer possible to use these difference approximations-
because the particle “sees” more than one turbulent velocity u’, on the current cycle.
Possible-approaches to-thisproblem are to restrict Aito be some fraction of #;,, or to
subcycle the droplet equations using subeycle timestep 8¢ such that 8¢ < £;,,5. These-
methods are computationally inefficient, however, when t;,,4 is smaller than A¢, and are
unusable when £;,,p becomes orders of magnitude smaller than At.

Qur approach to this problem forsakes someaccuraey to obtain computational effi-
ciency. When At.> ;.1 we choose random velocity and pesition changesfrom prebability-
distributions that we have derived33 for the droplet turbulent velocity and position
changes. Thus; independent-ofhowlarge-Atisrelative t04,4;, ourmethodrequiresthre-
choice of only two random numbers-each timestep, one to determine its turbulent velocity
change and one to determine its turbulent position change.

This approach isinaccuratein several respects. First, when At > #;,,5, we ignore the
effects of the fluctuating velocity u’p on heat and mass exchange and on droplet breakup.
Second, in deriving the probability distributions for turbulent velocity and position
change; we have assumed thatthe drag function Dy, £, and’tj,» are constant for a given
particle on the current timestep. In particular, the effects of a nonlinear drag law are not
included in the probability distributions. There appears to be no alternative tothe
assumption of a linear drag law because use of a nonlinear law renders intractable the.
problem of deriving probability distributions for turbulent velocity and position changes.

The derivation of thedistributions is givenin Ref. 33, and here we only summarize
theresults. The assumption of a linear drag Iaw allows us to treateach component of the
velocity and position changes independently. For each component the distributions are
Gaussian; the velocity distribution has variance

1 —exp(=D-t, )

piurd’

T 1+ exp(~D ¢, 0

Q
&N

(1 — exp (—2D Ablo” (G-4)
turd

and-the position distribution has variance

2t

2
u

: o2
2 turb ' 2 G-5
Oy = ?turb,At - D- th = ep (—D.D;At)] + DQ; 2} ,0 i ( )

L P ag

p

where 02 = $k. An additional quantity, a turbulence persistence time tp,r, is used in
choosing the turbulent pesition-change and-enters because the distribution of velocity and
position changes are not independent. This quantity is given by
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02,
u

¢t [l —exp(—~D AY]~—
turb p 2
Do (G-6)

-
pe 02,/02
u

When At > t,,4 the particle velocity and position are updated using

B n

X —X 8' -
P P=vn+ X (G-7)
At p At

and
B n
VvV =—-V ’
8 _

E_P_p @l —vBy+g+ —, (G-8)

At p ik 'p At

where 6x’ and 8u’ are the turbulent position and velocity changes. First, each component
of 8u’ is chosen from a Gaussian distribution with variance o,/2. Then 8x’ is calculated
from

§x'=¢ Su’' + 6x, , (G-9)
per [}

where each component of §x’p is chosen from a Gaussian distribution with variance 0,2 —

tperzcu'z.

APPENDIX H
THE VARIABLE IMPLICITNESS PARAMETERS

Variable implicitness is used in KIVA-II when differencing the diffusion terms and
terms associated with pressure wave propagation. The amount of implicitness is chosen,
in part, to ensure numerical stability of the difference approximations to the individual
terms in question. If stability were our only concern, fully-implicit schemes would be used.
Computational efficiency can be gained, however, by minimizing the amount of implicit-
ness. When the timesteps are small enough, KIVA-II will automatically use stable ex-
plicit schemes for which no costly iterative solution is required. When implicitnessis
required, KIVA-II uses a partially implicit difference scheme in which there is some
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weighting of both the old- and new-time values of the solution variable. It has been our
experience that most iterative procedures for implicit equations, including the conjugate
residual method used in KIVA-II; converge more slowly for fully implicit than for-
partially implicit schemes. A fully implicit scheme is only used by KIVA-Il in the limit of
an-infinitely large timestep: In this section we give the analyses upon-which-the formsaof-
the implicitness parameters are based: Inadditionto motivating the formsweuseforthe
implicitness parameters, the analyses are interesting in that they reveal the nature of
some of the numerical errors inherent in KIVA-II solutions.

‘vVe*first*g’ive*the*ana*iysis*for”determiningfh"e implicitness parameter ¢, for the
pressure gradient terms. The form of ¢, is obtained by considering the KIVA-TI finite .
difference equations applied to the problem of one-dimensional inviscid acoustic wave
motion in a gas with nearly uniform density p, and pressure p,. We use a computational
mesh with uniform cell'size Ax and cross-sectional’area A. In one dimension the approxi-
mations to the vertex momentum equation (78) and cell face velocity equation (86) both
reduce to the same form:

n+i- n ] n’+'1 n+1- Dn noy
. - . 1 foLa A - ' -
JtE Jt3 1 T+ cJ +10 H-1
e B A +(1-¢)’————- | (H-1)
At 2P hx Ax |

<)

In (H-1) uj+ 1 is the velocity at a vertex or a cell face between cellsjand j+1. All Phase B
quantities equal their advanced-time values (e.g., ij =p J-”+ 1) since convection terms are
negligible for acoustic waves. An equation for the pressure is obtained by combining

Eq. (102) for the cell volume change and the linearized form (112) of the equation of state:

vB v o Apar,ntl o ndly (H-2a).
vj vo—r'L.\tA uj+% j‘%j
and
Yp

In (H-2) VJ.-B is the Phase B cell volume and V_ is the initial uniform cell volume, vV, =
AAx. Combining (H-2a) and (H-2b) gives

P, —p; Yy Ty (H-3).



By using (H-1) to eliminate the velocities in (H-3), we could derive and analyze the differ-

ence approximation to the pressure equation. Our approach is to keep (H-1) and (H-3) in
their present forms and solve for both u;4+ 3 and p e

Numerical solutions of (H-1) and (H-3) can be found in terms of the Fourier compo-
nents of p jand uj+ 3. Substituting the values

p;l = Anyp0 exp (ikj Ax)

and

n

—_— n . . 1. H‘4
u® , =B"c aplik(+4$) Al (H-4)

into (H-1) and (H-8) and solving for A"+ 1 and B"*1 yields

2
Ant 1+a(1—q>p) a n
1- a2c1>p 1 - a2¢p
Bn+1 a 1 Bn ’ (H'5)
2 2
l1—-a"0d 1-a"0
P p
where

a= —2iCssin1p/2 ,

coAt
C = —,
s Ax
1 Yp,
c,= = _—,
a 2,
and
w==FkAx.

Numerical solutions will be stable if and only if both eigenvalues of the above matrix are
less than or equal unity.

The eigenvalues A of the matrix in (H-5) can be seen to be

1—2(1 — ) C2sin2y/2 £ 2C singw/2 V(1 - ¢ 2C2siny/2 — 1
A= P s s P s

2 .2 : (H-6)
1+4 <1)pCs sin” /2
124



If (1 — ¢p) Cs < 1, the two A are complex conjugates and have common magnitude:
=11+ 4, Csin® gr2)h (H-7)
Thus the scheme is stable if(1' —§p)Cs < 1or, equivalently, if ¢, > 1 — 1/Cs.

Motivated by thisresult, we calculate the value of ¢, based on the local Courant
number Cjg:

o = o if” k(,:);k <717f" (H-8)
P’ijk - n . v\ ’
1-—- I/U(Cs)ijk] if (Cs)ijk > 1/f
where
/..n n
YV = \//' YipPin AL (H-9)
Eih ’

s T et m2l e 72
2, e _

Axd = 4T — 3P+ Ixp - (1 (H-10).

and the x;7’s refer to the vertex locations of cell (i, j,k) as numbered in Fig. 2. The quantity
fis an empirically determined safety factor. The above analysis gives f > 1.0 as a suffi-
cient-condition-for stability in-one-dimensional problems with uniform cell sizesand-
material properties. Using f = 2.5 has been found to give stable results in all our test
calculations.

When Cs < 0.4, ¢p will be zero and an explicit difference approximation will be used-
by KIVA-II:. The-cell facevelocitiesarefirstfound-from Eq. (86), and then the Phase B ceil
volumes and Phase B pressures are found from Egs. (102) and (112). Since the magni-
tudes of the eigenvalues give the amount of numerical damping, Eq. (H-7) shows acoustic
waves are not numerically damped by this explicit scheme, although there is some numer-
ical dispersion-of-acoustic waves. This is the difference scheme used inthe original KIVA
code! to calculate pressure wave propagation.
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We now motivate the choice for ¢, the variable implicitness parameter for the diffu-
sion equations. The form of ¢pisindicated by an analysis of the KIVA-II difference approx-
imation to the one-dimensional diffusion equation with constant diffusion coefficient v:

Yn+1___Yn Yn __2Yn+Yn Yn+1_2Yn+l+Yn+1
J J _ J+1 J Jj—-1 Jj+1 J Jj—1 H-11
—— =v|a- b)) > + ¢, = ] . ( )
Substituting

Y;f = A" exp (ikj Ax)
into (H-11) gives the following equation for A" +1;

1+2(0 -¢,)C (cosy —1)

ArTYAr = (H-12)

1 - 20)[;Cd7(cosqr -1

where

C. =

vA¢L
d- 2

Ax

and

y = kAx .

Now we require that the approximation not only be stable, but that the amplitudes not
change sign:

n+1
o=t <. (H-13)
An

It is easily seen that the right-hand inequality in (H-3) is always satisfied. To satisfy the
left-hand inequality, since the denominator of (H-12) is always positive, we need the
numerator to be positive. The numerator is minimized for ¢ = r and has the value

1 — 4(1 — $,)Cq. Thisleads to the criterion

0 -9,)C, =3
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Motivated by this result, we compute ¢, from the equation

b, = «l . .
1-— 1/[ﬂCd)Uk] if (Cd)ijk > 1/4
where

un?, Ax?Ax%-i— Ax?AxEﬁ Ax% Axi o
€y = Ly T FE Tk (H-186)
“dlijk n A2 Ax? Ax? ’

Piik X 8% 5%

[ S A | 1T (H-17).
M=max,({ﬁ2”+'A‘ —, =, ——\l (H-17)

\ o Pr  Se Er,k, R’r,e /

and Ax;, Axj, and Ax, are defined in (H-10). In (H-17), A3 is the ratio of the second to first
coefficients of viseosity; Scis the Schmidt number; and Pr, Pri, and Pr, are Prandtl num-
bers for diffusionof heat, turbulence kinetic energy, and turbulence dissipation rate. For-
real gases; the argumentsin (H-17) are normally near unity, and one valueof ¢, isused
to calculate diffusion of all quantities. If one has an application for which there is a large
variation in the values of these arguments, then it is advisable to use separate values of -
dp for diffusion of each quantity.

Note thatif we had required just stability of the difference approximation, that is
AnTIAT > 1 from (H-12) it would have been sufficient to take-

g

q)D =3 - 1/(2():1)) s (H—l

or even ¢ = 4. This latter scheme is the Crank-Nicolson methed?' and'is second-order.
accurateintime. Although more accurate in time,; the Crank-Nicolson method and other-

o

methods that violate (H-14) have “overshoots” and are inaccurate for large values of C,



APPENDIXI
KINETIC CHEMICAL REACTIONS

Here we specify the procedure for evaluating the progress rates ®,A for the kinetic
chemical reactions. Since there is no direct chemical coupling between different cells, we
may focus attention on a representative cell (i, j,k) and suppress the subscript ijk.

The progress rates &, for the kinetic reactions are computed under the assumption
that, for each reaction r, every participating species is either inert (@, = bn,,) or appears
on only one side of the reaction (aprbpr = 0). We first calculate the quantities

— a
_n ~ mr
o =k [[ 6w
m

and
n e bl r
Q, =k TG W)™, 1-1)
m

where kf" and kp, " are evaluated from Eq. (17) with T replaced by T" and p,,, denotes an
intermediate value of p,, that has been updated due to kinetic reactions < r but not reac-
tions >r. We next identify the species, call it species K, for which

w (b —-a zr)(er - Qbr)/pm

m  mr n

is a minimum. This species is called the reference species for reaction r; it is the species
whose density isin greatest danger of being driven negative. Once K isidentified, we define

Ap=By + MW, lby Qp +ay,Q, 1,
o (I-2)
AB =Pyt AlWK[aKerr + erQbrI .

Then @, is given by

. BK(AT/AB -1
[0)] =
r AtWK(er —a

Kr) .

This prescription makes the part of dpz/dt that is due to reaction r linearly implicit in pg,
which prevents py from being driven negative no matter how large At is.
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EQUILIBRIUM CHEMICAL REACTIONS-

In thisappendix we describe the two procedures for evaluating the progress rates.
4 for the equilibrium reactions. For hydrocarbon combustion, a fast, algebraic solver is
provided in subroutine CHMQGM,; for more general circumstances, an iterative solver is.
provided in subroutine CHEMEQ. The c¢hoice of subroufinesis determined by inputflag
KWIKEQ. If KWIKE@ = 0, CHEMEQ isused; if KWIKEQ = 1, CHMQGMis used. In
the latter case one does not need to input the stoichiometric coefficients and constants
used to compute equilibrium constants in Eq. (19); these are stored in data statements for
the specific set of reactionsused in CHMQGM. We first deseribe the more general; itera--
tive solver.

I. SUBROUTINE CHEMEQ

Here we describe the procedure in subroutine CHEMEQ for evaluating the progress
rates @, for the equilibrium reactions during Phase A. The 6,4 are implicitly determined
by the requirement that the Phase A species densities p m'A must satisfy an approximation
to.the equilibrium constraint conditions of Eq. (18):

i A nrr— mr_ g riie A e ’J_l‘
[lelw ). = K (T exp (T4 - Ty}, &-1)
m
where
af"nKz
D = -
7 PR

and T and T4 are partially updated Lemperatures that will be defined shortly. In (J-1) we
have linearized €n K."aboutits starting value T, (The spatial indice ijk will be suppressed
throughout this appendix, as there isno direct chemical coupling between different cells.)
These constraint conditions constitute a coupled nonlinear equation system which is solved
by an iterative procedure.?> The iteration scheme used is amimprovement over the earlier
scheme-used in‘CONCHAS-SPRAY'®andincludes the effects on the-equilibrium con-
straints K.  of heat release from the equilibrium reactions.5? For simplicity, we assume
that the fuel species (species 1), of which the spray particles are composed, does not parti-
cipate in any of the equilibrium reactions..
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The iteration scheme consists, in essence, of the following ingredients: (a) precondi-
tioning of the equilibrium constraint conditions to make them more nearly linear in the
progress variables, (b) application of a one-step SOR-Newton iteration® to the precondi-
tioned system, followed by (¢) switching to a full Newton-Raphson iteration if the simpler
SOR-Newton iteration fails to converge in a specified number of steps. If the equilibrium
reactions are weakly coupled, convergence usually occurs before the full Newton-Raphson
iteration is called into play. However, if the reactions are not weakly coupled, the interac-
tion between them is properly accounted for by the matrix inversion in the Newton-
Raphson procedure.

Within this appendix, we denote by p,, and T partially updated species densities and
fluid temperatures that contain the contributions due to kinetic chemical reactions on the
current timestep. Tis given by

~

I I,
T=T +l2_wrQr
r

nn
/p cp) ,

where the sum is over kinetic reactions.. These values serve as initial values for the itera-
tion procedure. The final converged values of the species densities are the p mA. The
species densities are related to their initial values by

pm = Bm + Wm -\—- (bms - ams) ws ? (J_2)
s

and the partially updated temperatures are related to there initial values by

=T+ 1 Y sts]/(p"c;) : (J-3)

B

where wg = At &5 and the summations are over all equilibrium reactions. We denote by
w¢? the values of o, for which P, = pmA and T = TA. The values of @4 are then simply
o2 = wsA/AL. Because of Egs. (J-2) and (J-3), we may regard Egs. (J-1) as a coupled non-
linear system of equations for the unknown quantities ws?. Since these equations will be
solved iteratively, we introduce an iteration index v, which will be displayed as a super-
script. Thus the approximation to wA after iteration v is denoted by w,", and the corre-
sponding approximations to p mA and T4 are

p =3 +W Nb —a (J-4)
m m n e ms ms L]
s
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and-
=T+ i ]/(p"c:) : (J-5)

It is understood that ws® = 0, so that p kﬁ'= ppand T° = T. Tt will also be necessary to
refer to intermediate species densities defined by

< vew S vt (3:6)-
’v °)—rp + W }__ b —a J&"+W D> b —a )&
m mz me 2 M demat mz mez Zz
z=1 z=38

=1 N .
Twa=T+|> Qo'+ > qu ! |1, (J=7)
L0 L Re, (PG
z=1- Z=8-

where N is the numberofequilibrium reactions.

One further notational convention will prove useful. We introduce a vector p = (p,,
Pg, ..., Pyg: T) Whose components are the species densities p,, and temperature 7. Func-
tions of the p,, and T can then be compactly written simply as functions of the vector vari-
able p. The notation pvrefers; of course, to the vector whose components are the p, vand-
TV, and p(v,s) refers to the vector with components p, (v,s) and T(v,s).

We now proceed to consider how the equilibrium constraints of Eq. (J-1) might be
preconditioned to make them more nearly linear in the w;. The first step is to identify the
principal or dominant dependence of the left member of Eq. (J-1) upon the w 4. The form
of thisquantity suggests that we determine, for each reaction s, the species m for which
the factor(p,,/ Wm)bms —%ms depends most-sensitively; in some appropriate sense, on the-
ws. Letthis be the species with index m = p(s) and denote byys),s — au(s),s by q;. The
species m.= u(s) will be referred to as the reference species for reaction s.. The dominant.
dependence of the left member of Eq. (J-1) on the w¢? is now regarded as being contained
in the factor (p# ) /W, ,(y)%. Since p , itselfis linear in the @, this dominant depend-
ence can be made to manifestitselflinearly by raising both sides of Eq. (J-1) to the power

= 1/q,. We therefore replace the constraint conditions of Eq. (J-1) by the precondi-
+1oned ‘constraint-conditions

b -
n (f}A /"&r ams)ps l{K(’z")}p .,“-fp:[i;r I’I‘A :71)} (J_S)
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It is convenient fo introduce quantities F((p) and G,(p) defined by

S/ s Oms J
G, =KD [ w) (J-9)

m

and

F =G '*—eplpD (T4 - Py, (J-10)

8 §

in terms of which Eq. (J-8) becomes simply

F (% =0. (J-11)

We have yet to specify how the reference species are to be determined. For simplici-
ty, we define the reference species for reaction s as the species for which the factor
(p m/Wm)bmS“‘ms depends most sensitively on w; alone, without regard for the other prog-
ress variables. That is, p(s) is the value of m for which the quantity

a -b b s
R ("_m>’” msi(im.)”“ (J-12)
ms Wm ékos w

is largest in magnitude. This quantity is easily evaluated from Eq. (J-2), with the result

=W lp )b, —a ). (J-13)

This depends on p, , so it is necessary to specify which species densities are to be used in
the evaluation of the reference species. This will be done below.

In the subsequent development, we shall require the partial derivatives dF /3w,
which are also easily evaluated from Egs. (J-2) and (J-3). The resultis

aF

é rk m (J'14)
am = p, G A, =D Q/pc)exp {p D (TF - T},

where the matrix Ag/(p) is defined by

—a )b ,—a ) (J-15)

ms ms m¢ mt’ "

Y
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m
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By virtueof Egs: (§-2) and (J-3), the quantities F(p), G (p), and A s{p) may alternatively
be regarded as functions of the progress variables w;; and this will be-done without special
comment when it is appropriate or convenient to do so.

Theiteration scheme as a whole is structured as follows. The first: Ngiterations are
performed with a one-step SOR-Newton-algorithm. If convergence has not already occur-
red, all subsequent iterations are performed-with a Newton-Raphson algorithm (except as-
noted in the description below) We currently take No = 7. The iteration scheme is con-
sidered to have converged when |G PsF | < eforall's. Currently cistaken tobe 0.02. We
now proceed to a detalled descrlptmn of the SOR-Newton and Newton-Raphson algo-
rithmsthatare used:

A one-step SOR-Newton iteration procedure; applied to the system of Eq. (J-11),
takes the form®?-

+
. QF (w"“,...,wz i, u):,... o)
o =@l - . (J-16)
ES IR \mv+| my:gal,wy, 0\)"’7‘)/‘6(,&)""7
R PN\ - o)

s 1
§=1

where Q is the overrelaxation parameter. Equations (J-14), (J-10), (J-8), and (J-7) allow
us to rewrite Eq. (J-16) in the more useful form

P, ~
Qq G exp{p D (T - T} —-1] J-17)

b, ~
P S aan D (T .

where G and A  are evaluated at p(v+1,s) and T is evaluated at T(v+1,s). Itis not neces-
sary to-actuaily evaluate p(v+1, s) by meansof Eq. (J-6), because if the p, are continually
updated as running sums then p(v+1,s) is simply the “current” value of p just prior to the
evaluation of wg¥ ™1
Strictly speaking, since p; is considered constant in evaluating 8F /dw,, p, (and
therefore q,) should be held constant and not allowed to vary with v. This might seem all
the more advisable inview of the fact that p; varies discontinuously with the p,, or w,. In
practice; however; we'have found that convergence is slightly accelerated if p, andq,in
Eq.(J-17) are allowed to vary by reevaluating u{s) in terms of the 0,,(v+1,s)onevery
iteration. Noproblems have yetheen experienced in doing se, but if such problems were-
to occur it would merely be necessary to hold p, and g, fixed with the values determined by
the initial species densities p,,.
The value of 'ms“"'+'1' — g given by Eq. (J-17) is subjected to the restriction
0.980™" < o't — oY £0.900™ (J-18)
s s 8 §
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where

-1
Swmin _ min Wm (ams - bms) ’ (J_lg)
s m pm(v+1,s)
-1
max max Wm (ams B bms) _
8™ = == = (J-20)
m pm(v+1,s)

are the minimum and maximum values of ;¥ ! — @ " that preserve the nonnegativity of
thep,,.
A standard Newton-Raphson iteration applied to the system of Eq. (J-11) yields

D [oF (@), .., o}l @ — @) = —F (@, ., o) . (J-21)
t

Using Egs. (J-14), (J-10), (J-4), and (J-5), we may rewrite this as

S 1A, - 0@/ )G e o DT — PN@ ! — &) = 4 (G exp p D7 D)~ 11, (I2D)

4
where G, and A, are evaluated using pv. To obtain the ws't1, it is necessary to invert an
N X N matrix. This may be done using any of the standard methods, one or more of which
are usually available as modular library subroutines in large computer centers.

Again, p_and q, should strictly be held constant in Eq. (J-22). In practice, however,
we find it slightly advantageous to allow them to vary with v by reevaluating the refer-
ence species in terms of the p, ¥ on every iteration.

In spite of the preconditioning, Eq. (J-22) occasionally yields values of ws”* ! that
drive one or more of the p,, ¥+ I negative. (In particular, this may happen when a single
trace species of very small concentration is involved in two or more reactions, as the ma-
trix then becomes ill-conditioned.) When this occurs, the values of ws¥+! — w¢¥ given by
Eq. (J-22) are all reduced in magnitude by a factor a(0 < a < 1),and thep, ¥+ 1 are recom-
puted accordingly. If any of them are still negative, the reduced values of ws**! — w, are
further reduced by another factor of a, and the p,,¥+! are recomputed again. If necessary,
this procedure is repeated up to N, times, whereupon if negative values of the p m"*’ Lstill
persist, the o ¥t 1 given by Eq. (J-22) are simply discarded. The iteration is then repeated
as an SOR-Newton iteration, with the o'+ ! obtained from Eq. (J-17). We currently use
the valuesa = 0.3 and N, = 6.
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II. SUBROUTINE CHMQGM

Subroutine CHMQGM utilizes an algorithm devised by Meintjes and Morgan?! for
the solution for the simuitaneous equilibria of six reactions importantin hydrocarbon.
oxidation:

N,=2N

20H=0,+H,
2H,0=2H,+ 0, .

I contrast to CHEMEQ, which solves for reaction progressincrements o4, CHMQGM:
solves for the equilibrium molar coneentrationsof the-chemical species. Fouradditional
equations are needed to solve for the temrconcentrations; and these are just the element-
conservation relations for carbon, hydrogen, oxygen, and nitrogen. The temperature T

7 r.

used to evaluate the equilibrium constants K" for reactions (J-23) is given by
IV/ ("™, (J-24)
[ A

where the sum is over all Kinetic chemical reactions. Because the formulation does not
include the effects on the equilibrium constants of heat release from the equilibrium reac-
tions, small cyele to eyele oseillationsin-temperature and speeies concentrationscanoccur
in some applications.®? These oscillations are small in most hydrocarbon combustion
problems, however, and it is better to use subroutine CHMQGM instead of CHEMEQ
because it-is much faster..

The increase in speed of subroutine CHMQGM is achieved because the ten equations
for the concentrations are algebraically reduced to a much simpler system; whichcan be-
quickly solved. The details of this reduction can be found in Ref. 24, and here we only
summarize the simple system that is solved. First the equilibrium and element-
conservation equations involving nitrogen; which-are uncoupled from the remainderof
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the system, are easily solved for the concentrations of molecular and atomic nitrogen. The
remaining eight equations are then combined algebraically to obtain two cubic equations
in two unknowns. These are scaled concentrations of atomic hydrogen and carbon mon-
oxide. The simultaneous cubic equations are solved by Newton-Raphson iteration, using
the scaled concentrations from the previous cycle as a first guess. Because of the manner
in which the equations are scaled, it is always necessary to have at least trace amounts of
carbon present.

The values of reaction rates &,2 are not needed when subroutine CHMQGM is used:
The mass and energy source terms are differenced by

S = (2 — B )/t (J-25)
and

oo _N g (J-26)
Q° = % B0,

where p, is the initial density of species m before equilibrium reactions and Eq. (J-26)
follows from combining Egs. (20), (21), and (22).

APPENDIX K
CALCULATION OF VELOCITY GRADIENTS AND VISCOUS STRESSES

According to Eq. (4), evaluation of the viscous stress tensor requires evaluation of
the velocity gradients. These gradients and stresses are taken to be cell-centered quanti-
ties and are considered uniform within regular cells.

Velocity gradients are obtained in the following manner. We begin with the identity

du
4
— =V-(u

ox
m

(K-1)

€em) ?
where u, is the velocity component in the £th Cartesian coordinate direction and e, is
the unit vector in the mth Cartesian coordinate direction. After integrating Eq. (K-1)

over computational cell (i, j,k) and using Gauss’ Divergence Theorem, one obtains
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e -dA,. (K-2)-

and the right-hand side is approximated by
Z (uf)aem * A(] ) (K_4')
a

where(u;)q isthe equal-weighted average of the four values of u ¢ associated with the
four vertices bordering face a, and Aq is the outward area projection vector of face a.

Aftercaleulating these veloeity gradients, the stress componentsincell (1, ],k) are
obtained from

" - V. . v
[y8w, N gdu "1 rom N\
< - 4 b1 \ 1 o a - R
o, @ =it (=) +(=2) ear (22} 5, (K-5)
Em=" Tk Mg /- Vax, /0 RN gx / v
m ik € ijk n ik

where the superscriptv denoctes to time-level of the velocity field:

APPENDIX L.
THE ALTERNATE NODE COUPLER

In this appendix we describe the alternate node coupler used in KIVA. Thisisa pro-
cedurefor-damping the hourglass veloeity modes thatvecurin numerical fluid dynamics-
calculations that have velocities located at computational cell vertices. The basic idea of
our procedure is to detect and subtract, in each computational cell, velocity modes for
which the finite-difference approximations to the mean velocity and velocity gradients are.
zero. This is done in such a way that linear momentum is conserved. Since these modes
have no calculated mean velocity or velocity gradients, no physical forces are introduced.
by the numerical procedure. The procedure does-introduce a-small-numerical-damping-
whose nature is discussed in Ref. 186.
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In typical hourglass velocity modes, the average velocity and velocity gradients at
each cell center are zero when these are calculated from centered differences involving
just the vertex velocities of the cell. Thus in the absence of an alternate node coupler, no
force will be calculated to damp the hourglass mode.

In order to detect the hourglass modes in KIVA, for each computational cell, we con-
struct a set of vertex velocities with approximately the same computed mean velocity and
velocity gradients as the velocity field in the KIVA calculation, but which does not have
the hourglass modes. This velocity for vertex € of computational cell (i, j,k) is given by

2 Mo n
ou” - au” - du -
g™ [__ - - (L-1)
us = — + (x—x.,)+[ y,— y..,)+ (z,— 2..),
4 Z M ax 1k [4 ik d lije ¢ ijk az ik 4 ijk
m
m

where the summation is over the vertices m of cell (ijk); M',, is the mass associated with
vertex m;

au"

aun.
l ax

s [ —_ , and
gk Loy lijk oz lijk
are the velocity gradients calculated as in Appendix K; %;j. is the center-of-mass

x-coordinate

XMz,
- m

e = -‘-ZT ; (L-2)
m

and i, and 2, are center-of-mass y- and z-coordinates defined in an analogous fashion.
It is seen that u,g is the sum of four terms. The first is independent of £ and is the mass-
averaged vertex velocity. The remaining three sets of velocities vary linearly in physical
space, have mass-averaged velocity equal to zero, and, as we will show below, each has a
derivative approximately equal to that of un in one Cartesian coordinate direction and
derivatives equal to zero in the other two directions. It is natural to assume that velocity
fields that vary linearly in space do not possess hourglass modes.

The hourglass modes for computational cell (i, j,k) are then given by

anc _ n _ ug (L-3)

u, e " Yo
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Since the computed mean value and derivatives of u,€ are equal to those of u,n in cell
(i,7,k), the mean value and derivatives of u £0C are zero in cell (i, j,k). Todamp the hour-
glass modes-we subtract.a-fraction-Suyene of uyenc framthe velocity of each-vertex £:-

suane = ANC yane (L-4)

The quantity ANC is a user-input parameter whose value istypically taken to be 0.05. A
factor of 4 is inserted into Eq. (L-4) so that the effect of our alternate node coupler con-
forms in some simple cases to that.of previous node couplers.*?

It-is easy to verify thrat our node coupler conserves momentum. Indeed, by summing
M’ ¢8ug®C over all vertices € and substituting from Eqs. (1.-4), (1-3), and (L-1), one obtains

ANC

Z M auanc

(ZM u; - ;M;ug: 0. (L-5)

We now show that the computed velocity derivatives of Sug?™¢ in-cell (i, j,k) are approxi-
mately zero. The finite-difference approximations to these velocity derivatives-are given-
in Appendix K. It canbeseen that

,_‘

[ES——
t\?

(.3)

L
+ ﬁ,r;»il:
z}k “1"ax

’!',JD
.--——-q

where [0/3x];j, denotes the finite-difference approximation to the derivative in the-
x-direction in cell (ijk), B1 and P2 are constant, and u; and ug are two sets of velocity
values associated with the vertices of cell (i, j.k). Using the defining equations of §ug%"¢
and Eq. (L-6), it is seen that in order to show

-[a(‘ﬁul—lncj ]- (i?‘-?)
l ox- ]ijk' o,

i)

it is sufficient to show

(L-8).

Using Egs. (L-1) and (K-2)-(K-4), we see that
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ouf 1 [= <= au” - .- :
—| = {u..sz-i+I-—] Dlx ~x, VA i
& lyp - y2 e a g T ¥R 9
ijk
au” - - " — - _
+[E]ijkz(ya_yijk)Aﬂ.l_i—[_é::]iij(za—zijk)Aﬂ.l ’ (L-9)
a a
where
N n
zMe“e
— £

the sums are over the faces a of cell (i, j,k), and Zq, 74, and 2, are the arithmetic averages of
the x-, y-, and z-coordinates of the four vertices bordering face a. By using the identity

> A =0, , , (L-10)
a

Eq. (L-9) can be reduced to

auf au” o au”
H——} ZxA-i+[—
& b 0@ & Lijk

ax

1
s n
ik Vu.k

— au” oy —
T db. (L1l
%quu 1+[ % lljk%zuAa 1]. ( )

Now 2 oXaAq - iis afinite-difference approximation to the surface integral [g ijk xi-dA,
where S;jp, is the surface of cell (i, j,k). Applying Gauss’ Divergence Theorem to this
surface integral gives

J xi-dA = ] V-(xi)dV=V.. .

s v ijk
ijk ijk

Hence we obtain

2 wiA =V (L-12)

Similarly one can show
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2. yiAL =0 (L-13)
and
>z irA =0 (L-14)

Using Egs. (1.-12), (L.-13), and (L-14) in Eq. (L-11) gives

[ I ol (L-15)
Lo Iy L D’

which is the desired result. The analogous results for the derivatives in the y- and

z-directions-are obtained similarly.

Thus the computed derivativesof Sugancin cell (i; j;k) are nearly zero. Notall previ-
ous alternate node couplers have had this desirable property. For example, consider the.
node coupler of the SATE-3D computer program.*® In a two-dimensional caleulationin-
which-the solution isinvariant in the k-direction, SALE-3D superimposes on the vertex
velocities of cell (i, j; k) avelocity field of the form

(L-16)

where Aanc = uy. + ug — ug — u4, Ifthe x- and i-coordinate directianscoineide_ if the-
computation cells are rectangular, and if centered differencing is used to calculate
d(Buenc)/gx, the resultis

Thus [a(8uanc)/dx];je is nonzero if this sum is nonzero..

Most previous alternate node couplershave alse had theundesirable property that
they sometimes subtract hourglass modes even when these are not present. Consider a
computed velocity field in which u = ax. By our assumption this velocity field has no hour-
glass modes. The alternate node coupler in CONCHAS-SPRAY 8 subtracts a-velocity field-

8“3"6 ~ (_1)6 AG’IC ,

o
W
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where again Aanc = u; + uz —ug —uy. Hence Aanc ~ x; + X3 — X9 — X4, and the algo-
rithm superimposes a nonzero hourglass mode in cells where x; + x3 - X9 — X4 is not zero.
A node coupler similar in spirit to ours has been proposed by Margolin.f* His node
coupler has in common with ours the property that the superimposed vertex velocities
have no associated mean velocity or velocity gradients. His method, however, introduces
undesirable hourglass modes when the cell vertices do not satisfy x; + x3 — x92 — x4 = 0.

APPENDIX M
QUASI-SECOND-ORDER DIFFERENCING

In this appendix we describe the quasi-second-order upwind (QSOU) differencing
scheme that can be used in Phase C to calculate convection. Many methods®%66:87 have
been proposed for obtaining what are called monotone finite difference schemes. The
QSOU method is a modification of a scheme proposed by van Leer,?? and the basic ideais
perhaps best understood by considering the family of upwind differencing schemes for
one-dimensional convection that are represented in Fig. M-1. In each scheme we assume
the density profile within a cell is linear and has a value at the cell center equal to the
computed old-time value of density for that cell. The old-time densitiesin cellsi—1, i,
i+1,and i+2 are plotted using dots in Fig. M-1, and the density profilesin cellsiand i+1
are the solid lines. The four schemes of Fig. M-1 differ only in the slope used for the densi-
ty profile within each cell. For each scheme, the mass convected across a boundary
moving from point A to point B is the area under the density profile between points A and
B. Because of this method for calculating convection, the new-time total massin a cell is
just the area under all the old-time density profiles between the new boundaries of the
cell. Assuming the left boundary of cell i+ 1 does not move, the new-time mass of cell i+1
is the area crosshatched in Fig. M-1.

Before discussing the four schemes of Fig. M-1 we need to define some terms. A func-
tion p is monotone increasing (decreasing) if x; < xg implies p(x1) < p(xg) (p(x1) >
p(x2)). A monotone function is one that is either monotone increasing or monotone
decreasing. Now let x; denote the location of computed density p;. A difference scheme for
convection is weakly monotone if it has the following property: ifp;, ;" lies between p;”
and p;  o"and x;, ;" " !liesbetween x;" and x; 5", then p; ;" *1lies between p;” and
p;1o" Adifference scheme is strongly monotone if it has the following property: if

Il< n < n < n n> n - n ~ n
Py =P 1 =P a=Pig ;=0 =0 =0,
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and’

o n+1 <,n+l n
* =% _xi+2 —x_ia,-:.l ?
then

n n+l n+l . n (aF = Tl n¥l o
By SPipy SPg SPg B =P, TP, =P

The strongly monotone property is very desirable because strongly monofone schemesdo.
not have the undershoots and overshoots of many higherorder methods.?! Itiseasytoshow
that for the family of schemes of Fig. M-1, a sufficient condition for strong-monotonicity is
the following: if p;  ,"lies between p,"and p;, »™, then the density profilesin cells i, i+1,
and i+ 2, takentogether, form a monotone function. We-call this conditionnthe monotone-
profiles condition.

Let us now consider each of the schemes of Fig. M-1, In donor cell differencing; the-
slope within-each-cellistakentobezero. Donorceildifferencing satisfies tiie monotone-
profiles condition and hence is sirongly monotone. Donor cell differencing is first-order
accurate in space, however, and has too much numerical diffusion for many applications.

To remedy this accuracy problem, one might consider the centered-gradient scheme
of Fig. M-1b. Here theslopedp/dx within eachcell is givenby-

o I L R It & o
ac i 2Ax. (M-1)

This scheme is stable and second-order accurate; butnot weakly monotone. The reason is
shown in Fig. M-1b. The density profiles in regions of large change in dp/dx can have large
undershoots or overshoots. In Fig. M-1b the density profile-in cell i+1 hasvalues less
thanp;"; andhreneep;, " 1 whichisthe average value of p underthe crosshatched area
of the profile, is less than p;".

Van Leer’sscheme correets this problem by limiting themagnitude of the slope.22-If
p;*liesbetween p; ;" andp;, ", then the magnitude of the slope dp/dx|; is required to be
small enough that the density profile in cell i assumes values between p; " and p; . If
p;" does not lie between p; _™and p;_ ", then the slope dp/dx|; is taken to be zero. The
resulting change in the slope in cell i+ 1 is shown in Fig. M-1¢. The slope in cell i is not
limited because the density profile in this cell already assumes valuesbetween p; ;" and
9;.1" It-can be shown that VanLeer’s scheme isweakly monotone andissecond-order
accurate for computed densities for which the slope-limiting procedure is not used. The
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scheme isnot:strongly monetone: For example; ifthe left- boundary of cell-iismoved-fronr
point-C to point B in Fig: M-1¢, then we-would have p;** 1>-p: 1 eventhough the
valuesp; % p;"% p;, 1" andp;, o are monotone increasing.

The QSOU scheme was devised to satisfy the monotone-profiles condition and hence
to be stfengly monotone: The QSOU scheme might also be called the minimum gradient.
scheme because if p;" lies between p; _ ln‘and p;+1" then the slope is taken to be

oy

s n
R signi{p; — )
% __i__(f_i_,_p‘_‘lminq"_ nol et — o (M-2)
PR Ax Py =Pl Py Pl
As with van Leer’s scheme, if p.” does not lie between p; ;™ andp, . ;" then dp/dx|; is taken -

to be zero. Intheexample of Fig. M-1d, the slopesin-cellsiandi+1 areboth limited by
thispreseription:

We now show the QSOU prescription for 3p/3x|; satisfies the monotone-profiles condi-
tion. Suppose p;_ ;" < p;” < p;, " the monotone-decreasing case is handled similarly.
Then, according to the QSOU prescription for the slopes,.

n n n n
dp (Pirr T B P TR
_7' ;m{n‘ I’ , ,2':7
drsi; \ Ax Axs
n n
A ' P,_-,""P,;, 1
o=2| L =T
ax—!,._lf Ax
and
n n
P, P,
x4 Ax

From (M-3) we see that the density profiles are monotone increasing within cellsi—1, i,
and i+ 1. It remainsto showthat

|
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| -

=p. -
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sp

9 .Aéx_ (M-4)

LT ax |y
and these inequalities are easily proven to be true by using the inequalities (M-3).

The QSOU scheme is second-order accurate in space only when (p; , ; — p;/Axisa
constant independent of i, but the scheme will be nearly second-order accurate when
(p; 1 — p;YAx varies slowly on the scale of the mesh spacing. When (p;, ; — p;)/Ax is con-
stant, the scheme reduces to interpolated donor cell differencing (see Appendix N). When
ap/ax|; = 0, the scheme reduces to donor cell differencing. The QSOU scheme is method for
selecting an amount of upwind differencing that maximizes accuracy while maintaining
strong-monotonicity.

For future reference, we summarize here the QSOU scheme for a one-dimensional
mesh with variable cell sizes. Let Ax; = xj4+1 — xjand Ap; = p; | — p;. One first calcu-
lates the slopes in each cell according to

) (IAP,-I lap, |l o a
sign(Ap.) min| —— ) i Ap. >0
| _ gn(Ap) m ax  hx f Ap,Ap, (ML5)
ax | ; ’
0 if Ap,Ap, [ <O0.

Then the density pg, used for fluxing through cell face a between cellsiand i+ 1, is given
by

ap ( 6Va .
P+ — i(xu—xi) -+ if 8V >0
{
— (M-6)
p =
‘ ap 8Vu
0,1~ P iﬂ(xiﬂ—xu)(l + Vi+1> if 6Va<0.

In Eq. (M-6) xq is the location of cell face a, §V is the flux volume, taken positive if cell i is
the upwind cell, and V;is the volume of cell i.

There are many possible ways to extend this method to a three-dimensional mesh of
arbitrary hexahedrons, and we have chosen a simple extension in which the fluxes in each
coordinate direction depend only on gradients in that coordinate direction. Consider the
determination of the quantities p v, where p is one of the cell-centered quantities to be
convected (p = pm, pl, pk, or pk3/2/e), vis the convective subcycle number, and a is the
common face between cells (i, j,k) and (i +1, j, k). Fluxes in the j- and k-coordinate direc-
tions are treated analogously. Using a straightforward extension of (M-5), we first calcu-
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late the cell-centered derivatives of p with respect to distance sin the i-coordinate.

direction:
J lap}l  1ao)_ |l  aot
szgn(Ap)mt ( s —-——) i p.Ap. >0
—p =4 lAx] " lax; | dot (M-7)
as | ik i
l 0 if ApYAp! <0

In (M-T),

Ap'=p’ . . . —p'

p; p’z,-i-l;],lai p’thy,k'
and-

Ax, = x° —x°

L i'+7};j)k” iy’jnki,

where the cell-centered locations x;;,° are calculated using Eq. (65) and the new-time-
vertex locations. Then p,vis obtained from an extension of (M-6):

|v Vo
{ y 3p.. :
- - — — >

I Pijet 3 I ,1k1 . ”klkl ) if 8V >0
ol = \J‘ y ”b’ (M-8)-
Yo ) a0 | . 8V

c .

l Lk T Bs |y in LR v if 8V, <0.
i+10k

In (M-8) xq is*the’simple’ avéxr"agefi’)f the new-time locations of the four vertices of cell face
a, V; j k" is the cell volume after v convective subcycles and is given by Eq. (120), and 8V
Is the flux volume associated with face-a. Thequantity 8§V, is positive if volume is being-
added to cell (i +1, j, k) by the movement of face a, in which case cell (i, j,&) is the upwind.
cell, and 8§V, is negative if cell (i +1, j,k) is losing volume, in which case cell (i+1, j,k) is-
the upwind cell.

Special prescriptions are needed when cells are located next to computational bound-

»ries. Ifface alies on a wall or an outflow boundary and cell (i, j;k) is the fluid cell, one of
whose faces is a, then-

h

[
i .
| =U >
Vi, jk

kil
3s

ey
.S
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where the derivative is with respect to distance in the coordinate direction going into the
wall. The derivatives in the other coordinate directions are unaffected, unless other faces
of cell (i, j,k) lie on computational boundaries. If face a lies on an inflow boundary, then
(M-7) is used with modification to calculate the derivative with respect to the coordinate
direction going into the inflow boundary. The modification is that the density and loca-
tion of the cell center on the other side of the inflow boundary are taken to be the pre-
scribed inflow density and center x, of cell face a, respectively. If face a lies on an inflow
or outflow boundary, we also replace prescription (M-8) with pure donor cell differencing.
Prescriptions are also required for the velocities ugv used for fluxing momentum
across the composite faces of the momentum cells. We describe fluxing of u-momentum in
the i-coordinate direction; fluxing of other velocity components in the other coordinate dir-
ections is treated similarly. First, using a straightforward extension of (M-5), we calcu-
late for each vertex the derivatives with respect to distance in the i-coordinate direction:

s sy o
au Y sgn(Aui)mtn<m, inx, |> if AuiAui_1>O
= = i i-1 (M-9)
ijk
. v v
0 if Aui Aui_1<0.
In (M-9)
v __ v v
Auj=u; =%k
and
Ax. = n+1 n+1l

i TitL ik Tk

When vertex (i, j,k) lies on a computational boundary, then the derivative, with respect to
distance in the coordinate direction going into the boundary, is taken to be zero.

In order to calculate ugv by extending (M-6), we also need a quantity analogous to
8V/V;. In a one-dimensional calculation with constant cross-sectional area, this quantity
is the Courant number based on the fluid velocity relative to the grid velocity. It is con-
venient to base its counterpart for momentum fluxing on the ratio of the mass flux
(8Mg°)Y, defined in Sec. HI.G, to an open-flow-area mass (Mp°)" that is defined by

1 -
Y _ Al h4 -
(Mﬁ) =1 zk I'i,j,kMi,j,k , (M-10)
(i, .k
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where ¥ j i-is the cell flag for cell (i; j k), defined in-Sec: IV.F, M 4.k is themassof cell’
(i, 1.k) after v conveetive subeycles; and thesum isover thefour regular cellathathave in-
common the regular cell edge passing through face § and joining vertices (i, j;k) and
(i-+1,j,k). The formulaforcalculating upg"isthen-

n+l1 n+1 c\V
ey et Mg sl @M
I u, .t — j1 - — | if- 6M)" >0
- Iy a8~ Vi,rj,kf Z 1 (ME)V’ N P
u? =j (M-11)
6:' i +1 21
HE ol e g A Oy Y=
I 1Y X, —=x 0 GMN .
I..v du ) il j ko E{J.Rl 3. . B .. (EMSY < O
s , ’y |1+ ——— i &My <0
L R e 08714 Lk e 1 (Mlg‘ I 22

The mass flux (6M€)” is taken to be positive if mass is being added to vertex (i +1, j,k) by
the movement of face f§, in which case momentum cell (i, j,k) is the upwind cell. If(8M 8%y
isnegative; momentum-cell (i + I, j,k)is the upwind-cell:.

APPENDIX N
PARTIAL DONOR CELL DIFFERENCING-

Here we describe the partial donor cell differencing procedure that can be used to-
evaluate the cell-face quantities ", where @ stands for any of the variables p m B pk;
pL, or u. We first describe the procedure for the cell-centered quantities p m 0L, pk, and
pL. Lettheregularcellinquestionbecalledcell 1, and let the neighboring cell that is
common to the face a be called cell 2. The guantity Q" is.evaluated as an upstream-
weighted average of @1 and Q2". The first step is therefore to determine which cell is the
upstream-ordonorcell: Thisisclearly determinedbythesign of8V,: if 6V, > 0 then ceil
21is the upstream or donor cell while cell 1 is the-downstream or acceptor cell, and vice
versa. Thus we define

_Q; if 8V > ¢

@)=
Q) if 8V, < 0 (N-1)
and.
Q) if 8V, > 0
Q=

Q; if SV('1 < 0,
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where the subscripts “d” and “a” refer to “donor” and “acceptor” respectively. The partial
donor cell prescription for Q4" is then given by

QU=1Q (L +a,+B O +4Q°0 —a - B0, (N-2)
where ag and fg are adjustable coefficients (0 < ag + BoC < 1),and

28V |
a

- (N-3)
V1 + V2

is an effective Courant number based on fluid speed relative to the mesh.

Ifag = Po = 0, the above prescription reduces to centered differencing of the convec-
tive terms, which is unconditionally unstable unless compensated by a sufficient amount
of diffusion. Ifag = 1 and Bg = 0, pure donor cell or upwind differencing results. This
scheme is stable, but is too diffusive for most applications. Its effective numerical diffu-
sivity is #lulAx in the x-direction, $lvlAy in the y-direction, and 4lwiAz in the z-direction.
If ag = 0 and Bg = 1, the so-called interpolated donor cell scheme results. This is effec-
tively a weighted average of centered and donor cell differencing, with the weighting
factor set at the value for marginal stability. This scheme is less diffusive than pure donor
cell differencing but is not monotone (see Sec.III.G). The optimum values of ag and Bg in
any particular calculation must be determined empirically, usually with reference to the
nominal values ag = 0.1, Bg = 1 as a starting point.

To prevent the possible development of negative turbulent quantities, the values
ag = 1, o = 0 are used instead of the input values when Q = pkor pL. That is, the con-
vective transport of turbulent energy and length scale is always done by pure donor cell
differencing.

The procedure for evaluating ug on the momentum cell composite faces is entirely
similar but is based on 8Mp instead of 8V,. Let the vertex in question be called vertex 1,
and let the neighboring vertex which shares face f be vertex 2. Define

if G6MY" > 0
uy if GMY” < 0 (N-4)

and

u’ if (SME)V > 0

ul if (SME)V < 0.



Then u,"is given by

1 ! ( - -
) =4u (1+a,+BCY+ju (1 —a, - BC), (N-5)
where:
4jEMYT
c — : (N-6)

M?L'!‘rl +; M’!+l+ fdﬂ"'l + IMRE‘}'L
a b c d

whereq, b; ¢; and drefer to the four regular cells sharing the regular cell edge joining
vertices 1 and 2.

APPENDIX O
ROBIN-HOQOD-ALGORITHM-

The Phase C rezoning algorithm mimics the advection terms of the Navier-Stokes
equations and consequently suffers from the usual numerical difficulties associated with
those terms. The worst two problems arenumerical diffusion and dispersion truncation
errors. The first of these is well known, and the KIVA program allows the user the option
of using interpolated donor cell differencing or quasi-second-order upwind (QSOU) differ-
encing to reduee thisartificial smoothing to more or less acceptable levels while retaining-
stability. Dispersion errors can be significant when using interpolated donor cell differ-
encing; causingartificial ripplesin the selution. The-diagnosticcharacteristicisspatial-
oseillations-with-a period-of several-cells; whichtendto be most severeinregionsof'steep
gradients such as shock waves or flames. These oscillations can be severe enough to drive
species masses negative in some cells, and it is this behavior that the Robin Hood (RH)
algorithm was designed to prevent. If the relevant quantities are positive in a cell, it is
unaffected by RH, and RH is not needed, and therefore not used, if QSOU differencing is
used.

RH is a primitive form of the flux limiter that derives its name from the fact that it
steals from rich cells and gives to the poor. Suppose that a given cell has a negative
species mass. RH searches the six facing neighboring cells and picks the one with the
largest' mass of the particular species. Enough species mass is removed from that cell ta
bring-its poorneighboruptozeromassforthatspecies. The specific internal‘energies and-
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turbulent kinetic energies and length scales of the two cells must be adjusted for this mass
exchange. If the rich cell does not have enough species mass to bring its neighbor up to
zero, all of the mass of that species is transferred to its neighbor. In this way, negative
values are reduced without introducing new ones.

While the RH procedure may seem ad hoc, it probably does more good than harm.
The diffusion that it represents is typically localized in space and time, and it does reduce
the magnitude of dispersive errors slightly. Most importantly, it represents a simple
attempt to limit convective fluxes to physically realistic values, maintaining positivity in
quantities that must be positive to allow calculation of other quantities such as chemical
reaction rates.

FAPPEND[X p
ANGULAR MOMENTUM CONSERVATION LOGIC

In an axisymmetric swirling flow with free-slip boundaries, the total angular mo-
mentum should be conserved. However, in their basic form the KIVA difference approx-
imations to the momentum equations simply conserve the three Cartesian components of
momentum, and this does not imply angular momentum conservation because of trunca-
tion errors. This lack of conservation is a serious problem for calculations of swirling flow
in internal combustion engine cylinders because the truncation error effects are typically
larger than the legitimate physical swirl decay due to boundary layer drag. In practice,
only the truncation errors in the rezone calculation are found to be significant. We have
therefore devised an optional angular momentum correction procedure which is incorpor-
ated into the rezone calculation of Phase C.

The essence of the procedure is most easily explained in the context of a model prob-
lem, namely the pure Eulerian convection of momentum represented by the differential
equation

a(;)tu) + V-(puu)=20. (P-1)

Consider the augmented differential system

a(pu) _ . . (P-2)
pranis V- (pun) = Blly — ypi — (x — xyjl,
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aps) o (P-3)-
(ft' +Ve(psu)=0, (P-3)

s=(x—x)v— (v~ You . {

.

whichis tobe regarded as-a systemof five equations for- the five- dependent variables u, v,
w, B, and s. Equation (P-4), which shows that s is the angular momentum per unit mass
about the-axis{(x,y) = (xg,y0); plays therole of a constraint which implicitly determines-
the dependent variable § = B(x,t). An equation for Bcan be obtained by combining Egs..
(P-2)-(P-4), and when this is done one finds that is identically zero. Thus the system of”
Egs. (P-2) and (P-4) is precisely equivalent to the original Eq. (P-1).

The idea now is to write difference approximationsfor Egs: (P-2)-(P-4) instead of the-
equivalent Eq. (P-1). These difference equations will of course not be equivalent to those
obtained by naively differencing Eq, (P-1) because of truncation errors. Differencing Eqs..
(P-2)-(P-4) is preferable because this system explicitly-contains-a conservation equation-
for the angular momentum density s; and'so a conservative differencing of this equation
will automatically conserve angular momentum.

A suitable difference scheme for Egs. (P-1)-(P-4) is-

)ﬂ.'f‘l

(pu - (pu)®
? - <V ) = g e lem xdk, (P-5)
t
n+1 ¢ n
{(ps)" " " — (ps)y -
= + <Ve>(psu)* =0, (P-6).
+1 +1 +1 (P-7).
2T = fxb}-'jf‘ —(y— —yé}zzfz , (P-7).

where <Vv-->-is the spatial difference operatorused to-approximate the differential diver-
gence operator. This scheme may be rewritten as

(pw)"™* = o At By — - - )l (P-8)-
()"t = (p9)" — AL <V -> (psu) , (P-9)
sn+1:(x_xo)vn+l_(y_y0)un+l , (P-].O)

where {i is the value of un+1 that would result from Eq. (P-5) if f? T 1 were zero. This of
courseis-thevalueof-ur+!-that-wouldbeobtained by simply differencing Eq: (P-1); The
vertical componentof Eq; (P-8) isjust
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+1_ o~
wrtt =10,

(P-11)
which shows that the procedure does not affect w, as one would expect. The component of
Eq. (P-8) in the direction of (x — x0)i + (y — yg)j is

n+1l

(x—xu 4 (= y o T = — )T+ (- )T (P-12)
We now observe that Egs. (P-10) and (P-12) are two equations for the two unknown quan-
tities un+1and vn+1in terms of sn+1, which is obtained from Eq. (P-9). Notice thatitis
not necessary to explicitly solve for p** 1. The solution of these equations is easily found
to be

w" = a7 - x )l x) (0 — 38— & =y (P-13)
" = d T — 1) & — Y+ Oy — )+ - x)s" (P-14)

where d = (x — x0)% + (y — yg)2. Once un+1and vn+1have been determined, sn+1 is.of
no further interest and need not be retained.

The net result of the procedure may be described in the following way. One first cal-
culates a provisional value of un+1 using the basic difference scheme that one would
adopt on other grounds, without regard to angular momentum conservation, and one
further calculates sn+1 using the same scheme. One retains the vertical and radial com-
ponents of this un+1 but discards the tangential or azimuthal component and replaces it
by the value that agrees with sn+1, Described in this way, the procedure sounds ad hoc
and unjustified, but the preceding development shows that it is in fact a well-defined and
consistent difference approximation to the differential problem.

Application of this procedure to the rezone phase of KIVA is simple and straight-
forward. Atthe start of the rezone phase, the vertex-centered quantity s;j; is initialized in
terms of the Phase B velocities using Eq. (P-4) above:

B

_ B B B
Sk = iy = XV — U

ijk

—yo)us.k . (P-15)
The angular momentum density sjjv+1 is computed by replacing u;jr with sz in Eq. (127)
of the main text, so that angular momentum is fluxed in the same way as linear momen-
tum. The corresponding values of ujjzv+ 1 and vjj,v+1 then serve as the provisional values
iiijr and vjjk, and the final values of ujpv+1 and v;jpv+ 1 are obtained from Egs. (P-13) and
(P-14) with x and y replaced by x;jzv+1 and y;j,v+1, u and v replaced by ijr and Ujjz, and
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un+1land vn+1replaced by u;jjpv+1 and vjjpv+1. The intermediate vertex positions are

given by.

v B n+1
X = [(NS — V)xijk + VE, VNS ,
where NS is the number of convective subcycles. The correction procedure is optional and-
is activated by aninputflag. Itisalwaysdeaetivated ifinputflag CYL is zero.
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